基于电鳗觅食优化算法(Electric eel foraging optimization,EEFO)的无人机三维路径规划(提供MATLAB代码)

一、无人机路径规划模型介绍

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。

二、算法介绍

电鳗觅食优化算法(Electric eel foraging optimization,EEFO)由Weiguo Zhao等人提出的一种元启发算法,EEFO从自然界中电鳗表现出的智能群体觅食行为中汲取灵感。该算法对四种关键的觅食行为进行数学建模:相互作用、休息、狩猎和迁徙,以在优化过程中提供探索和利用。此外,还开发了一个能量因子来管理从全球搜索到本地搜索的过渡以及搜索空间中探索和开发之间的平衡。

2024最新算法:电鳗觅食优化算法(Electric eel foraging optimization,EEFO)求解23个基准函数(提供MATLAB代码)-CSDN博客

参考文献:

Weiguo Zhao, Liying Wang, Zhenxing Zhang, Honggang Fan, Jiajie Zhang, Seyedali Mirjalili, Nima Khodadadi, Qingjiao Cao,Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications,Expert Systems with Applications,Volume 238, Part F,2024,122200,https://doi.org/10.1016/j.eswa.2023.122200.

复制代码
close all
clear
clc
dbstop if all error
warning ('off')
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=100;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
[fMin5,bestX5,ConvergenceCurve5] = EEFO(pop, maxgen,Xmin,Xmax,dim,fobj);
cost=MyCost(bestX5,2);%'路径成本','威胁成本','高度成本','转角成本'
%% 计算航迹坐标
BestPosition5 = SphericalToCart(bestX5);
%% 保存各算法的目标函数值及收敛曲线
save fMin5 fMin5
save ConvergenceCurve5 ConvergenceCurve5
save cost cost
%% 保存航迹坐标
save BestPosition5 BestPosition5 

三、部分结果

四、完整MATLAB代码

相关推荐
人生在勤,不索何获-白大侠5 分钟前
day15——Java常用API(二):常见算法、正则表达式与异常处理详解
java·算法·正则表达式
安思派Anspire13 分钟前
再见 RAG?Gemini 2.0 Flash 刚刚 “杀死” 了它!
人工智能
FF-Studio16 分钟前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
The_cute_cat18 分钟前
JavaScript的初步学习
开发语言·javascript·学习
master-dragon19 分钟前
spring-ai 工作流
人工智能·spring·ai
Naiva39 分钟前
【小技巧】Python + PyCharm 小智AI配置MCP接入点使用说明(内测)( PyInstaller打包成 .exe 可执行文件)
开发语言·python·pycharm
Wo3Shi4七39 分钟前
双向队列
数据结构·算法·go
Wo3Shi4七43 分钟前
列表
数据结构·算法·go
梦子要转行1 小时前
matlab/Simulink-全套50个汽车性能建模与仿真源码模型9
开发语言·matlab·汽车
moonless02221 小时前
🌈Transformer说人话版(二)位置编码 【持续更新ing】
人工智能·llm