基于电鳗觅食优化算法(Electric eel foraging optimization,EEFO)的无人机三维路径规划(提供MATLAB代码)

一、无人机路径规划模型介绍

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。

二、算法介绍

电鳗觅食优化算法(Electric eel foraging optimization,EEFO)由Weiguo Zhao等人提出的一种元启发算法,EEFO从自然界中电鳗表现出的智能群体觅食行为中汲取灵感。该算法对四种关键的觅食行为进行数学建模:相互作用、休息、狩猎和迁徙,以在优化过程中提供探索和利用。此外,还开发了一个能量因子来管理从全球搜索到本地搜索的过渡以及搜索空间中探索和开发之间的平衡。

2024最新算法:电鳗觅食优化算法(Electric eel foraging optimization,EEFO)求解23个基准函数(提供MATLAB代码)-CSDN博客

参考文献:

Weiguo Zhao, Liying Wang, Zhenxing Zhang, Honggang Fan, Jiajie Zhang, Seyedali Mirjalili, Nima Khodadadi, Qingjiao Cao,Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications,Expert Systems with Applications,Volume 238, Part F,2024,122200,https://doi.org/10.1016/j.eswa.2023.122200.

复制代码
close all
clear
clc
dbstop if all error
warning ('off')
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=100;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
[fMin5,bestX5,ConvergenceCurve5] = EEFO(pop, maxgen,Xmin,Xmax,dim,fobj);
cost=MyCost(bestX5,2);%'路径成本','威胁成本','高度成本','转角成本'
%% 计算航迹坐标
BestPosition5 = SphericalToCart(bestX5);
%% 保存各算法的目标函数值及收敛曲线
save fMin5 fMin5
save ConvergenceCurve5 ConvergenceCurve5
save cost cost
%% 保存航迹坐标
save BestPosition5 BestPosition5 

三、部分结果

四、完整MATLAB代码

相关推荐
крон11 分钟前
【Auto.js例程】华为备忘录导出到其他手机
开发语言·javascript·智能手机
zh_xuan44 分钟前
c++ 单例模式
开发语言·c++·单例模式
老胖闲聊1 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1181 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之2 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
豆沙沙包?2 小时前
2025年- H77-Lc185--45.跳跃游戏II(贪心)--Java版
java·开发语言·游戏
军训猫猫头2 小时前
96.如何使用C#实现串口发送? C#例子
开发语言·c#
DFminer3 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
liuyang-neu3 小时前
java内存模型JMM
java·开发语言
郄堃Deep Traffic3 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划