基于电鳗觅食优化算法(Electric eel foraging optimization,EEFO)的无人机三维路径规划(提供MATLAB代码)

一、无人机路径规划模型介绍

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。

二、算法介绍

电鳗觅食优化算法(Electric eel foraging optimization,EEFO)由Weiguo Zhao等人提出的一种元启发算法,EEFO从自然界中电鳗表现出的智能群体觅食行为中汲取灵感。该算法对四种关键的觅食行为进行数学建模:相互作用、休息、狩猎和迁徙,以在优化过程中提供探索和利用。此外,还开发了一个能量因子来管理从全球搜索到本地搜索的过渡以及搜索空间中探索和开发之间的平衡。

2024最新算法:电鳗觅食优化算法(Electric eel foraging optimization,EEFO)求解23个基准函数(提供MATLAB代码)-CSDN博客

参考文献:

Weiguo Zhao, Liying Wang, Zhenxing Zhang, Honggang Fan, Jiajie Zhang, Seyedali Mirjalili, Nima Khodadadi, Qingjiao Cao,Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications,Expert Systems with Applications,Volume 238, Part F,2024,122200,https://doi.org/10.1016/j.eswa.2023.122200.

复制代码
close all
clear
clc
dbstop if all error
warning ('off')
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=100;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
[fMin5,bestX5,ConvergenceCurve5] = EEFO(pop, maxgen,Xmin,Xmax,dim,fobj);
cost=MyCost(bestX5,2);%'路径成本','威胁成本','高度成本','转角成本'
%% 计算航迹坐标
BestPosition5 = SphericalToCart(bestX5);
%% 保存各算法的目标函数值及收敛曲线
save fMin5 fMin5
save ConvergenceCurve5 ConvergenceCurve5
save cost cost
%% 保存航迹坐标
save BestPosition5 BestPosition5 

三、部分结果

四、完整MATLAB代码

相关推荐
IT古董1 分钟前
【漫话机器学习系列】214.停用词(Stop Words)
人工智能·机器学习
zz93810 分钟前
Trae 04.22重磅更新:AI 编程领域的革新者
人工智能
爱编程的鱼16 分钟前
C# 结构(Struct)
开发语言·人工智能·算法·c#
2301_7696244023 分钟前
基于Pytorch的深度学习-第二章
人工智能·pytorch·深度学习
啊我不会诶24 分钟前
CF每日4题
算法
咨询1871506512728 分钟前
高企复审奖补!2025年合肥市高新技术企业重新认定奖励补贴政策及申报条件
大数据·人工智能·区块链
只可远观28 分钟前
Flutter Dart 循环语句 for while do..while break、continue
开发语言·javascript·ecmascript
Guheyunyi40 分钟前
智能照明系统:照亮智慧生活的多重价值
大数据·前端·人工智能·物联网·信息可视化·生活
uhakadotcom41 分钟前
人工智能如何改变医疗行业:简单易懂的基础介绍与实用案例
算法·面试·github
云天徽上1 小时前
【数据可视化-27】全球网络安全威胁数据可视化分析(2015-2024)
人工智能·安全·web安全·机器学习·信息可视化·数据分析