腾讯春招后端一面(算法篇)

前言:

哈喽大家好,前段时间在小红书和牛客上发了面试的经验贴,很多同学留言问算法的具体解法,今天就详细写个帖子回复大家。

因为csdn是写的比较详细,所以更新比较慢,大家见谅~~

就题目而言,前两题是平时刷题常见的,第三题没有见过,需要认真思考下

最后,希望找工作的同学都能收获心仪的offer

求两个数的最大公约数

链接

这道题没有找到原题链接,找到一个近似的题目

1979. 找出数组的最大公约数 - 力扣(LeetCode)https://leetcode.cn/problems/find-greatest-common-divisor-of-array/description/

给你一个整数数组 nums ,返回数组中最大数和最小数的 最大公约数

两个数的 最大公约数 是能够被两个数整除的最大正整数。

思路

辗转相除法原理:

两个整数的最大公约数等于其中较小的数和两数相除余数的最大公约数。

例如:欲求252和105的最大公约数;因为 252÷105=2...42,所以这个最大公约数也是42与105的最大公约数(42=21×2)。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至余数为零。这时,所剩下的还没有变成零的数就是两数的最大公约数。

我们将上述过程翻译成递归代码,得到如下代码:

bash 复制代码
class Solution:
    def findGCD(self, nums: List[int]) -> int:
        def gcd(x,y):
            if x>y:
                x,y = y,x
            if x==0:return y
            return gcd(y%x,x)
        
        return gcd(max(nums),min(nums))

lru缓存

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity)正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

链接 : LRUCache. - 备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/lru-cache/

思路

我这里用列表模拟队列,用字典实现缓存,设计了总容量,当前元素数等变量进行模拟

bash 复制代码
class LRUCache:

    def __init__(self, capacity: int):
        self.capacity = capacity
        self.cnt = 0
        self.queue = []
        self.dic = defaultdict(int)

    def get(self, key: int) -> int:
        if key not in self.dic:
            return -1
        del self.queue[self.queue.index(key)]
        self.queue.append(key)
        # print(self.queue)
        return self.dic[key] 

    def put(self, key: int, value: int) -> None:
        if key in self.dic:
            del self.queue[self.queue.index(key)]
            self.queue.append(key)
            self.dic[key] = value

        elif self.cnt < self.capacity:
            self.queue.append(key)
            self.dic[key] = value
            self.cnt+=1
        else:
            del self.dic[self.queue[0]]
            del self.queue[0]
            self.queue.append(key)
            self.dic[key] = value



# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

最长字符串链

链接:

最长字符串链https://leetcode.cn/problems/longest-string-chain/

给出一个单词数组 words ,其中每个单词都由小写英文字母组成。

如果我们可以 不改变其他字符的顺序 ,在 wordA 的任何地方添加 恰好一个 字母使其变成 wordB ,那么我们认为 wordAwordB前身

  • 例如,"abc""abac"前身 ,而 "cba" 不是 "bcad"前身

词链 是单词 [word_1, word_2, ..., word_k] 组成的序列,k >= 1,其中 word1word2 的前身,word2word3 的前身,依此类推。一个单词通常是 k == 1单词链

从给定单词列表 words 中选择单词组成词链,返回 词链的 最长可能长度

思路

这道题是这三道中我唯一没有见过的题,但面试中遇到没见过的题也蛮正常的,不要慌,放心做即可。

我们对每一个字符串进行查找,比如 abfd,我们检查bfd,afd,abd,abf这四个字符串在不在words数组中,如果不在就return,否则继续查找,保存最长的链条。

这道题中,我在dfs函数上加了缓存,存储一些已经计算的点,使用tuple()是因为列表无法被哈希话,所以把它转为元组。题解中有很多更好的写法,读者可以多去学习

bash 复制代码
class Solution:
    def longestStrChain(self, words: List[str]) -> int:
        global cnt
        cnt = 0
        words = tuple(words)
        @cache
        def dfs(w,words,length):
            if w not in words:
                global cnt
                cnt = max(cnt,length)
                return
            n = len(w)
            for i in range(n):
                temp = w
                w = w[0:i] + w[i+1:]
                dfs(w,words,length+1)
                w = temp
        for w in words:
            dfs(w,words,0)
        return cnt
相关推荐
鸽鸽程序猿7 分钟前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd7 分钟前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo61711 分钟前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v16 分钟前
leetCode43.字符串相乘
java·数据结构·算法
小奥超人18 分钟前
RAR压缩算法的文件修复功能详解
windows·经验分享·winrar·办公技巧
A懿轩A1 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
古希腊掌管学习的神1 小时前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
云边有个稻草人1 小时前
【优选算法】—复写零(双指针算法)
笔记·算法·双指针算法
半盏茶香1 小时前
在21世纪的我用C语言探寻世界本质 ——编译和链接(编译环境和运行环境)
c语言·开发语言·c++·算法
忘梓.2 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(3)
算法·动态规划