如何在没有向量数据库的情况下使用知识图谱实现RAG

引言

传统上,为大型语言模型(LLMs)提供长期记忆通常涉及到使用检索增强生成(RAG)解决方案,其中向量数据库作为长期记忆的存储机制。然而,我们是否能在没有向量数据库的情况下达到相同效果呢?本文探讨了通过自动生成的知识图谱作为LLMs长期记忆的骨干,无需向量数据库即可实现的方法。

RecallM的机制

RecallM是一种为LLMs设计的适应性记忆机制,它通过时间理解来更新和推理知识图谱。方法包括:

  • 知识图谱更新:通过识别语句中的概念(诸如名词)并将它们作为节点,然后根据这些概念之间的关系(通过距离来简化关系判定)创建节点间的连接。使用图数据库存储和更新这些概念及其关系。
  • 推理机制:利用知识图谱响应特定查询,如通过识别查询中的概念,找到与之相关的概念,并建立上下文以提示LLM生成响应。

时间推理和局限

RecallM的时间推理能力通过一个简单实验得到验证,该实验要求系统回忆并推理数百条之前的声明。尽管这种方法有效地整合了长期记忆到LLMs并具有时间理解,但其主要缺陷在于知识图谱的构建,特别是缺乏共指解析能力,这可能导致部分信息消失。

结论

RecallM提供了一个有趣的方法,使用图数据库为LLMs集成长期记忆,尽管面临着创建准确知识图谱的挑战,但它代表了AI系统方面的一个显著进步,持续的研究为其提炼和改进提供了机会。

关键词:大型语言模型,长期记忆,知识图谱,检索增强生成,时间推理。

相关推荐
F_D_Z几秒前
【解决办法】报错Found dtype Long but expected Float
人工智能·python
pen-ai7 分钟前
【高级机器学习】 12. 强化学习,Q-learning, DQN
人工智能·机器学习
受之以蒙19 分钟前
Rust ndarray 高性能计算:从元素操作到矩阵运算的优化实践
人工智能·笔记·rust
野生面壁者章北海24 分钟前
NeurIPS 2024|大语言模型高保真文本水印新范式
人工智能·语言模型·自然语言处理
KG_LLM图谱增强大模型26 分钟前
如何利用大语言模型(LLM)实现自动标注与内容增强
人工智能·知识管理·内容管理·本体论·图谱增强大模型·自动标签·大模型内容标注
数据与后端架构提升之路1 小时前
小鹏VLA 2.0的“神秘涌现”:从痛苦到突破,自动驾驶与机器人如何突然“开窍”?
人工智能·机器人·自动驾驶
fruge1 小时前
CANN核心特性深度解析:简化AI开发的技术优势
人工智能
沛沛老爹1 小时前
AI入门知识之RAFT方法:基于微调的RAG优化技术详解
人工智能·llm·sft·raft·rag
zskj_zhyl1 小时前
科技助老与智慧养老的国家级政策与地方实践探索
大数据·人工智能·科技
YangYang9YangYan2 小时前
职业本科发展路径与规划指南
大数据·人工智能·学习·数据分析