如何在没有向量数据库的情况下使用知识图谱实现RAG

引言

传统上,为大型语言模型(LLMs)提供长期记忆通常涉及到使用检索增强生成(RAG)解决方案,其中向量数据库作为长期记忆的存储机制。然而,我们是否能在没有向量数据库的情况下达到相同效果呢?本文探讨了通过自动生成的知识图谱作为LLMs长期记忆的骨干,无需向量数据库即可实现的方法。

RecallM的机制

RecallM是一种为LLMs设计的适应性记忆机制,它通过时间理解来更新和推理知识图谱。方法包括:

  • 知识图谱更新:通过识别语句中的概念(诸如名词)并将它们作为节点,然后根据这些概念之间的关系(通过距离来简化关系判定)创建节点间的连接。使用图数据库存储和更新这些概念及其关系。
  • 推理机制:利用知识图谱响应特定查询,如通过识别查询中的概念,找到与之相关的概念,并建立上下文以提示LLM生成响应。

时间推理和局限

RecallM的时间推理能力通过一个简单实验得到验证,该实验要求系统回忆并推理数百条之前的声明。尽管这种方法有效地整合了长期记忆到LLMs并具有时间理解,但其主要缺陷在于知识图谱的构建,特别是缺乏共指解析能力,这可能导致部分信息消失。

结论

RecallM提供了一个有趣的方法,使用图数据库为LLMs集成长期记忆,尽管面临着创建准确知识图谱的挑战,但它代表了AI系统方面的一个显著进步,持续的研究为其提炼和改进提供了机会。

关键词:大型语言模型,长期记忆,知识图谱,检索增强生成,时间推理。

相关推荐
腾讯WeTest19 分钟前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c36 分钟前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费37 分钟前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`1 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真1 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心2 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客2 小时前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP2 小时前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程
油炸小波2 小时前
02-AI应用开发平台Dify
人工智能·python·dify·coze
机器之心2 小时前
Gemini 3深夜来袭:力压GPT 5.1,大模型谷歌时代来了
人工智能·openai