如何在没有向量数据库的情况下使用知识图谱实现RAG

引言

传统上,为大型语言模型(LLMs)提供长期记忆通常涉及到使用检索增强生成(RAG)解决方案,其中向量数据库作为长期记忆的存储机制。然而,我们是否能在没有向量数据库的情况下达到相同效果呢?本文探讨了通过自动生成的知识图谱作为LLMs长期记忆的骨干,无需向量数据库即可实现的方法。

RecallM的机制

RecallM是一种为LLMs设计的适应性记忆机制,它通过时间理解来更新和推理知识图谱。方法包括:

  • 知识图谱更新:通过识别语句中的概念(诸如名词)并将它们作为节点,然后根据这些概念之间的关系(通过距离来简化关系判定)创建节点间的连接。使用图数据库存储和更新这些概念及其关系。
  • 推理机制:利用知识图谱响应特定查询,如通过识别查询中的概念,找到与之相关的概念,并建立上下文以提示LLM生成响应。

时间推理和局限

RecallM的时间推理能力通过一个简单实验得到验证,该实验要求系统回忆并推理数百条之前的声明。尽管这种方法有效地整合了长期记忆到LLMs并具有时间理解,但其主要缺陷在于知识图谱的构建,特别是缺乏共指解析能力,这可能导致部分信息消失。

结论

RecallM提供了一个有趣的方法,使用图数据库为LLMs集成长期记忆,尽管面临着创建准确知识图谱的挑战,但它代表了AI系统方面的一个显著进步,持续的研究为其提炼和改进提供了机会。

关键词:大型语言模型,长期记忆,知识图谱,检索增强生成,时间推理。

相关推荐
张拭心35 分钟前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩1 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.1183 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751283 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技3 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe3 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen3 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿3 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫3 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
汽车仪器仪表相关领域4 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试