如何在没有向量数据库的情况下使用知识图谱实现RAG

引言

传统上,为大型语言模型(LLMs)提供长期记忆通常涉及到使用检索增强生成(RAG)解决方案,其中向量数据库作为长期记忆的存储机制。然而,我们是否能在没有向量数据库的情况下达到相同效果呢?本文探讨了通过自动生成的知识图谱作为LLMs长期记忆的骨干,无需向量数据库即可实现的方法。

RecallM的机制

RecallM是一种为LLMs设计的适应性记忆机制,它通过时间理解来更新和推理知识图谱。方法包括:

  • 知识图谱更新:通过识别语句中的概念(诸如名词)并将它们作为节点,然后根据这些概念之间的关系(通过距离来简化关系判定)创建节点间的连接。使用图数据库存储和更新这些概念及其关系。
  • 推理机制:利用知识图谱响应特定查询,如通过识别查询中的概念,找到与之相关的概念,并建立上下文以提示LLM生成响应。

时间推理和局限

RecallM的时间推理能力通过一个简单实验得到验证,该实验要求系统回忆并推理数百条之前的声明。尽管这种方法有效地整合了长期记忆到LLMs并具有时间理解,但其主要缺陷在于知识图谱的构建,特别是缺乏共指解析能力,这可能导致部分信息消失。

结论

RecallM提供了一个有趣的方法,使用图数据库为LLMs集成长期记忆,尽管面临着创建准确知识图谱的挑战,但它代表了AI系统方面的一个显著进步,持续的研究为其提炼和改进提供了机会。

关键词:大型语言模型,长期记忆,知识图谱,检索增强生成,时间推理。

相关推荐
红纸2816 分钟前
Subword算法之WordPiece、Unigram与SentencePiece
人工智能·python·深度学习·神经网络·算法·机器学习·自然语言处理
golang学习记7 分钟前
Crush:新一代基于Go语言构建的开源 AI 编程CLI工具
人工智能
一车小面包10 分钟前
Subword-Based Tokenization策略之BPE与BBPE
人工智能·自然语言处理
红纸28111 分钟前
Subword分词方法的BPE与BBPE
人工智能·python·深度学习·神经网络·自然语言处理
zy_destiny23 分钟前
【工业场景】用YOLOv8实现反光衣识别
人工智能·python·yolo·机器学习·计算机视觉
zhangjipinggom27 分钟前
QwenVL - 202310版-论文阅读
人工智能·深度学习
PKNLP39 分钟前
深度学习之循环神经网络RNN
人工智能·pytorch·rnn·深度学习
大模型真好玩1 小时前
低代码Agent开发框架使用指南(三)—小白5分钟利用Coze轻松构建智能体
人工智能·agent·coze
计算衎1 小时前
PyTorch的AI框架小白入门的学习点
人工智能·pytorch·深度学习
文火冰糖的硅基工坊1 小时前
[嵌入式系统-98]:国内嵌入式AI算力板
人工智能·架构