如何在没有向量数据库的情况下使用知识图谱实现RAG

引言

传统上,为大型语言模型(LLMs)提供长期记忆通常涉及到使用检索增强生成(RAG)解决方案,其中向量数据库作为长期记忆的存储机制。然而,我们是否能在没有向量数据库的情况下达到相同效果呢?本文探讨了通过自动生成的知识图谱作为LLMs长期记忆的骨干,无需向量数据库即可实现的方法。

RecallM的机制

RecallM是一种为LLMs设计的适应性记忆机制,它通过时间理解来更新和推理知识图谱。方法包括:

  • 知识图谱更新:通过识别语句中的概念(诸如名词)并将它们作为节点,然后根据这些概念之间的关系(通过距离来简化关系判定)创建节点间的连接。使用图数据库存储和更新这些概念及其关系。
  • 推理机制:利用知识图谱响应特定查询,如通过识别查询中的概念,找到与之相关的概念,并建立上下文以提示LLM生成响应。

时间推理和局限

RecallM的时间推理能力通过一个简单实验得到验证,该实验要求系统回忆并推理数百条之前的声明。尽管这种方法有效地整合了长期记忆到LLMs并具有时间理解,但其主要缺陷在于知识图谱的构建,特别是缺乏共指解析能力,这可能导致部分信息消失。

结论

RecallM提供了一个有趣的方法,使用图数据库为LLMs集成长期记忆,尽管面临着创建准确知识图谱的挑战,但它代表了AI系统方面的一个显著进步,持续的研究为其提炼和改进提供了机会。

关键词:大型语言模型,长期记忆,知识图谱,检索增强生成,时间推理。

相关推荐
叫我:松哥几秒前
基于Flask的心理健康咨询管理与智能分析,集成AI智能对话咨询、心理测评(PHQ-9抑郁量表/GAD-7焦虑量表)、情绪追踪记录、危机预警识别
大数据·人工智能·python·机器学习·信息可视化·数据分析·flask
合新通信 | 让光不负所托4 分钟前
氟化液、矿物油、改性硅油三种冷却液,分别适合搭配什么功率等级的浸没式液冷光模块?
人工智能·安全·云计算·信息与通信·光纤通信
啊阿狸不会拉杆4 分钟前
《机器学习》第五章-集成学习(Bagging/Boosting)
人工智能·算法·机器学习·计算机视觉·集成学习·boosting
Programmer boy5 分钟前
我是一名软件行业从业者,AI主要帮助我做哪些工作?
人工智能
Coder_Boy_6 分钟前
基于SpringAI的在线考试系统-成绩管理功能实现方案
开发语言·前端·javascript·人工智能·spring boot
lxs-7 分钟前
探索自然语言处理(NLP)的旅程:从分词到文本生成
人工智能·自然语言处理
大模型任我行7 分钟前
腾讯:RAG生成器感知的排序模型
人工智能·语言模型·自然语言处理·论文笔记
玩转AI6669 分钟前
AI-论文智能降重工具
人工智能
科研计算中心10 分钟前
2026年仿真计算对电脑的要求深度解析:从硬件选型到算力方案的全维度适配指南
人工智能·云计算·算力·高性能计算·仿真计算
幻云201010 分钟前
Python深度学习:从筑基与巅峰
前端·javascript·vue.js·人工智能·python