白话transformer(三):Q K V矩阵代码演示

在前面文章讲解了QKV矩阵的原理,属于比较主观的解释,下面用简单的代码再过一遍加深下印象。

B站视频

白话transformer(三)

1、生成数据

我们呢就使用一个句子来做一个测试,

python 复制代码
text1 = "我喜欢的水果是橙子和苹果"
text2 = "相比苹果我更加喜欢国产的华为"

比如我们有两个句子,里面都有苹果这个词。我们用text1来走下流程

1.1 创建词嵌入

我们使用spacy进行词嵌入生成,代码很简单

python 复制代码
nlp = spacy.load('zh_core_web_sm')
doc = nlp(text1)

我们为了简单一点只取前10个维度,实际上spacy默认的词嵌入维度是很高的,我们只是用前十个来过一下流程。

python 复制代码
emd_dim = 10

dics = {}
for token in doc:
    dics[token.text] = token.vector[:emd_dim]
X = pd.DataFrame(dics)

这样我们就得到了第一个句子中所有词的embedding表示

2、初始化 W q W_q Wq, W k W_k Wk, W v W_v Wv

具体的内容可以查看之前的文章Bert基础(一)--自注意力机制

为了创建查询矩阵、键矩阵和值矩阵,我们需要先创建另外三个权重矩阵,分别为 W Q 、 W K 、 W V W^Q 、W^K、W^V WQ、WK、WV。用矩阵X分别乘以矩阵 W Q 、 W K 、 W V W^Q 、W^K、W^V WQ、WK、WV,就可以依次创建出查询矩阵Q、键矩阵K和值矩阵V。

python 复制代码
d_k = 6       # QKV向量的维度

A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

d_k是指公式中的d_k

python 复制代码
Wq = np.random.randn(emd_dim, d_k)

Wq矩阵的格式,就是10*6

  • 10:是指词嵌入的维度
  • 6:d_k,Q的维度

Wk, Wv,同样

3、计算QKV

Q = X * Wq

python 复制代码
np.dot(X.T, Wq)

这样就得到了查询矩阵Q,Q其实可以理解为每个词需要查询的内容。

同样可以计算K和V矩阵

4、相似矩阵

计算公式为:
X W Q ∗ ( W K X ) T XW^Q *(W^KX )^T XWQ∗(WKX)T

其实就是我们计算好的Q和K
Q K T Q K^T QKT

直接点乘就可以得到每个词和每个词的相似性:

5、点积缩放

python 复制代码
Q@K.T/ np.sqrt(d_k)

6、Soft Max

我们自己遍历计算一下即可

python 复制代码
# 计算Softmax
for i in range(len(df_QK)):
    exp_v = np.exp(df_QK.iloc[i])
    softmax = exp_v / np.sum(exp_v)
    df_QK.iloc[i] = softmax

现在就得到了最后的相似性矩阵

7、attention

A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

根据公示直接将前面计算的结构点乘V

相关推荐
武子康1 天前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
忙碌5441 天前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
听风吹等浪起1 天前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰1 天前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
哥布林学者1 天前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(二)指数加权平均和学习率衰减
深度学习·ai
点云SLAM1 天前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
Sunhen_Qiletian1 天前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
LHZSMASH!1 天前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
忙碌5441 天前
智能应用开发指南:深度学习、大数据与微服务的融合之道
大数据·深度学习·微服务
Dfreedom.1 天前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数