Python环境下基于小波变换和机器学习的地震信号处理和识别

天然地震是由地球板块之间的碰撞或挤压引起的自然现象,这种碰撞或挤压导致板块边缘位移和板块内部破裂。非天然地震是指由人类活动引起的地面震动活动,比如矿震、核试验以及人工爆破等。随着社会经济的不断发展,人工爆破在生产生活中得到了广泛应用,比如建筑爆破、军事爆破、矿山爆破等。地震信号属于非平稳的信号,并且天然地震与人工爆破事件所辐射出的信号十分相似,对二者进行分类一直是地震学者研究的重点。由于天然地震具有突发且无规律可循的特点,因此测震台站需要对地震信号进行不间断的监测,监测到有效信号后要及时对无用的噪音信号进行剔除等操作,如果不能及时有效地淘汰除天然地震事件之外的波形记录,可能会对地震目录造成严重污染。不同震源的地震信号之间的细微差异可以通过地震波形的分类技术刻画出来。

鉴于此,提出一种基于小波变换和机器学习的地震信号处理和识别方法,运行环境为Python,采用的模块如下,需要安装pywt模块(pip install pywt):

复制代码
import pandas as pd
import numpy as np
import pywt
import scipy as sp
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

pywt版本为1.2.0,sklearn版本为1.0.2。

出图如下:

完整代码: Python环境下基于小波变换和机器学习的地震信号处理和识别

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
CiLerLinux1 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
青衫客361 小时前
基于 Python 构建的安全 gRPC 服务——TLS、mTLS 与 Casbin 授权实战
python·安全·微服务
-dzk-2 小时前
【3DGS复现】Autodl服务器复现3DGS《简单快速》《一次成功》《新手练习复现必备》
运维·服务器·python·计算机视觉·3d·三维重建·三维
七芒星20233 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
楼田莉子3 小时前
Qt开发学习——QtCreator深度介绍/程序运行/开发规范/对象树
开发语言·前端·c++·qt·学习
逻辑留白陈3 小时前
Adaboost进阶:与主流集成算法对比+工业级案例+未来方向
算法
RunningShare3 小时前
千万级用户电商平台,Flink实时推荐系统如何实现毫秒级延迟?
大数据·flink·推荐系统·ab测试
Learn Beyond Limits3 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
摩羯座-185690305944 小时前
爬坑 10 年!京东店铺全量商品接口实战开发:从分页优化、SKU 关联到数据完整性闭环
linux·网络·数据库·windows·爬虫·python
ACERT3334 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习