机器学习模型及其使用方法——《机器学习图解》

本书教你两件事------机器学习模型及其使用方法

机器学习模型有不同的类型,有些返回确定性的答案,例如是或否,而另一些返回概率性的答案。有些以问题的形式呈现;其他则使用假设性表达。这些类型的一个共同点是它们都返回一个答案或一个预测。比如,返回预测的模型的机器学习分支被命名为预测机器学习(predictivemachine learning)。这就是我们在本书中关注的机器学习类型。

本书的组织方式:路线图章节类型

本书的章节分为两种类型。大多数章节(第3、5、6、8、9、10、11 和12 章)都包含某一类型的机器学习模型。每章的模型都有相应的例子、公式、代码和习题供你进行仔细学习。其他章节(第4、7 和13 章)包含用于训练、评估和改进机器学习模型的实用技术。值得注意的是,第13 章包含一个真实数据集的端到端示例,你将能够在第13 章中应用前几章中学到的知识。

推荐的学习路径可以通过两种方式使用本书。我推荐逐章线性浏览,这样你会发现,交替进行模型学习和训练模型技术学习是有益的。但是,还有另一种学习路径,即先学习所有模型(第3、5、6、8、9、10、11 和12 章),然后学习训练模型的技术(第4、7 和13 章)。

当然,每个人的学习方式有所不同,也可以创建自己的学习路径!

本书主要内容

 描述预测性机器学习中最重要的模型及其工作原理,包括线性回归、逻辑回归、朴素贝叶斯、决策树、神经网络、支持向量机和集成方法。

 确定这些模型的优缺点以及使用的参数。

 确定这些模型在现实世界中的使用方式,并发现潜在方法,将机器学习应用于你想要解决的任何特定问题上。

 了解如何优化、比较并改进这些模型,以构建最佳机器学习模型。

 手动编程或使用现有安装包进行编程,并用它们对真实数据集进行预测。

如果你有一个特定的数据集或想要解决某一特定问题,我建议你思考如何将你在本书中学到的知识应用到这一数据集上,或用所学的知识解决问题,并以此为起点实现和实验自己的模型。

相关推荐
大千AI助手12 小时前
曼哈顿距离:概念、起源与应用全解析
人工智能·机器学习·数据挖掘·距离度量·曼哈顿距离·大千ai助手·街区距离
Jay200211114 小时前
【机器学习】23-25 决策树 & 树集成
算法·决策树·机器学习
海边夕阳200620 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
CoderYanger1 天前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:12.全排列
java·算法·leetcode·机器学习·深度优先·剪枝·1024程序员节
搞科研的小刘选手1 天前
【高录用|快检索】第二届图像处理、多媒体技术与机器学习国际学术会议(IPMML 2025)
人工智能·机器学习·多媒体·学术会议
高锰酸钾_1 天前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
CM莫问1 天前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归
xcLeigh1 天前
AI的提示词专栏:Prompt 与传统机器学习特征工程的异同
人工智能·机器学习·ai·prompt·提示词
DuHz1 天前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算
诚丞成1 天前
机器学习——生成对抗网络(GANs):原理、进展与应用前景分析
人工智能·机器学习·生成对抗网络