Transformer模型-softmax的简明介绍

今天介绍transformer模型的softmax

softmax的定义和目的:

softmax:常用于神经网络的输出层,以将原始的输出值转化为概率分布,从而使得每个类别的概率值在0到1之间,并且所有类别的概率之和为1。这使得Softmax函数特别适用于多类分类问题,其中模型需要预测输入样本属于多个可能类别中的哪一个。

特点:

softmax函数通过指数运算增强了数值间的差异,使得较大值在概率分布中占主导地位,同时抑制了较小值的影响。

Softmax函数是一种将K个实数值的向量转换为另一个K个实数值的向量,并且这些值的总和为1的函数。输入值可以是正数、负数、零或大于1的数,但softmax会将其转换为0到1之间的值,以便将它们解释为概率。如果输入值很小或为负数,softmax会将其转换为小概率;如果输入值很大,则softmax会将其转换为大概率,但概率值始终保持在0和1之间。

Softmax是逻辑回归的推广,可用于多类分类,其公式与用于逻辑回归的Sigmoid函数非常相似。只有当类别是互斥的时,softmax函数才能用于分类器。

许多多层神经网络都以倒数第二层结束,该层输出未经过适当缩放的实数值分数,可能难以处理。在这里,softmax非常有用,因为它将分数转换为归一化的概率分布,可以向用户显示或用作其他系统的输入。因此,通常将softmax函数作为神经网络的最后一层。

公式:

输入

Softmax函数的输入是一个包含K个元素的向量,其中不带箭头的z表示向量中的一个元素:

举例:

套用公式计算softmax:

输出是[0.006, 0.047, 0.946],总和大约为1。实际上,由于截断的原因,总和是0.999。最小的输入值5具有最低的概率,而最高的值10具有最高的概率。

PyTorch 使用指数和求和函数来计算softmax

PyTorch使用nn.Softmax来计算softmax

原文链接:

https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac

相关推荐
大江东去浪淘尽千古风流人物24 分钟前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
云飞云共享云桌面24 分钟前
高性能图形工作站的资源如何共享给10个SolidWorks研发设计用
linux·运维·服务器·前端·网络·数据库·人工智能
Swift社区26 分钟前
Gunicorn 与 Uvicorn 部署 Python 后端详解
开发语言·python·gunicorn
饭饭大王66628 分钟前
CANN 生态中的轻量化部署利器:`lite-inference` 项目实战解析
深度学习
Coinsheep30 分钟前
SSTI-flask靶场搭建及通关
python·flask·ssti
IT实战课堂小元酱30 分钟前
大数据深度学习|计算机毕设项目|计算机毕设答辩|flask露天矿爆破效果分析系统开发及应用
人工智能·python·flask
码农阿豪31 分钟前
Flask应用上下文问题解析与解决方案:从错误日志到完美修复
后端·python·flask
wqq631085533 分钟前
Python基于Vue的实验室管理系统 django flask pycharm
vue.js·python·django
Q_Q196328847535 分钟前
python大学生爱心校园互助代购网站_nyvlx_django Flask vue pycharm项目
python·django·flask
码农阿豪38 分钟前
Python Flask应用中文件处理与异常处理的实践指南
开发语言·python·flask