Transformer模型-softmax的简明介绍

今天介绍transformer模型的softmax

softmax的定义和目的:

softmax:常用于神经网络的输出层,以将原始的输出值转化为概率分布,从而使得每个类别的概率值在0到1之间,并且所有类别的概率之和为1。这使得Softmax函数特别适用于多类分类问题,其中模型需要预测输入样本属于多个可能类别中的哪一个。

特点:

softmax函数通过指数运算增强了数值间的差异,使得较大值在概率分布中占主导地位,同时抑制了较小值的影响。

Softmax函数是一种将K个实数值的向量转换为另一个K个实数值的向量,并且这些值的总和为1的函数。输入值可以是正数、负数、零或大于1的数,但softmax会将其转换为0到1之间的值,以便将它们解释为概率。如果输入值很小或为负数,softmax会将其转换为小概率;如果输入值很大,则softmax会将其转换为大概率,但概率值始终保持在0和1之间。

Softmax是逻辑回归的推广,可用于多类分类,其公式与用于逻辑回归的Sigmoid函数非常相似。只有当类别是互斥的时,softmax函数才能用于分类器。

许多多层神经网络都以倒数第二层结束,该层输出未经过适当缩放的实数值分数,可能难以处理。在这里,softmax非常有用,因为它将分数转换为归一化的概率分布,可以向用户显示或用作其他系统的输入。因此,通常将softmax函数作为神经网络的最后一层。

公式:

输入

Softmax函数的输入是一个包含K个元素的向量,其中不带箭头的z表示向量中的一个元素:

举例:

套用公式计算softmax:

输出是[0.006, 0.047, 0.946],总和大约为1。实际上,由于截断的原因,总和是0.999。最小的输入值5具有最低的概率,而最高的值10具有最高的概率。

PyTorch 使用指数和求和函数来计算softmax

PyTorch使用nn.Softmax来计算softmax

原文链接:

https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac

相关推荐
程序员Linc2 分钟前
计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
深度学习·机器学习·计算机视觉·机器视觉
不去幼儿园2 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法
McQueen_LT8 分钟前
聊天室Python脚本——ChatGPT,好用
开发语言·python·chatgpt
云卓SKYDROID12 分钟前
无人机投屏技术解码过程详解!
人工智能·5g·音视频·无人机·科普·高科技·云卓科技
zy_destiny18 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
自由的晚风20 分钟前
深度学习在SSVEP信号分类中的应用分析
人工智能·深度学习·分类
大数据追光猿20 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
Start_Present33 分钟前
Pytorch 第七回:卷积神经网络——VGG模型
pytorch·python·神经网络·cnn·分类算法
朴拙数科33 分钟前
1:1精准还原!用Python+Adobe Acrobat DC实现PDF转Word全自动化
python·pdf·word
supermodule33 分钟前
基于flask的一个数据展示网页
后端·python·flask