Transformer模型-softmax的简明介绍

今天介绍transformer模型的softmax

softmax的定义和目的:

softmax:常用于神经网络的输出层,以将原始的输出值转化为概率分布,从而使得每个类别的概率值在0到1之间,并且所有类别的概率之和为1。这使得Softmax函数特别适用于多类分类问题,其中模型需要预测输入样本属于多个可能类别中的哪一个。

特点:

softmax函数通过指数运算增强了数值间的差异,使得较大值在概率分布中占主导地位,同时抑制了较小值的影响。

Softmax函数是一种将K个实数值的向量转换为另一个K个实数值的向量,并且这些值的总和为1的函数。输入值可以是正数、负数、零或大于1的数,但softmax会将其转换为0到1之间的值,以便将它们解释为概率。如果输入值很小或为负数,softmax会将其转换为小概率;如果输入值很大,则softmax会将其转换为大概率,但概率值始终保持在0和1之间。

Softmax是逻辑回归的推广,可用于多类分类,其公式与用于逻辑回归的Sigmoid函数非常相似。只有当类别是互斥的时,softmax函数才能用于分类器。

许多多层神经网络都以倒数第二层结束,该层输出未经过适当缩放的实数值分数,可能难以处理。在这里,softmax非常有用,因为它将分数转换为归一化的概率分布,可以向用户显示或用作其他系统的输入。因此,通常将softmax函数作为神经网络的最后一层。

公式:

输入

Softmax函数的输入是一个包含K个元素的向量,其中不带箭头的z表示向量中的一个元素:

举例:

套用公式计算softmax:

输出是[0.006, 0.047, 0.946],总和大约为1。实际上,由于截断的原因,总和是0.999。最小的输入值5具有最低的概率,而最高的值10具有最高的概率。

PyTorch 使用指数和求和函数来计算softmax

PyTorch使用nn.Softmax来计算softmax

原文链接:

https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac

相关推荐
Maynor9961 小时前
Z-Image: 100% Free AI Image Generator
人工智能
码界奇点1 小时前
Python从0到100一站式学习路线图与实战指南
开发语言·python·学习·青少年编程·贴图
爬点儿啥1 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉2 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明2 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习2 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
Laravel技术社区2 小时前
pytesseract 中英文 识别图片文字
python
罗西的思考3 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
YJlio3 小时前
Active Directory 工具学习笔记(10.8):AdInsight——保存与导出(证据留存、共享与二次分析)
数据库·笔记·学习
dajun1811234563 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能