3D目标检测跟踪 | 基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化

  • 项目应用场景
    • 面向自动驾驶场景的 3D 目标检测+目标跟踪,基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化查看。
  • 项目效果
  • 项目细节 ==> 具体参见项目 README.md
    • (1) Kitti detection 数据集结构
bash 复制代码
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
    • (2) Kitti tracking 数据集结构
bash 复制代码
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
    • (3) 安装依赖
bash 复制代码
pip install python3 \
            numpy==1.21.3 \
            vedo==2021.0.6 \
            vtk==9.0.3 \
            opencv==4.5.4.58 \
            matplotlib==3.4.3
    • (4) 执行示例

      from viewer.viewer import Viewer
      import numpy as np

      vi = Viewer() # set box_type='OpenPCDet' if you use OpenPCDet boxes
      len_dataset = 1000

      for i in range(len_dataset):
      pseudo_boxes = np.array([[i0.05, -1, 1, 1, 1, 1, 0], [i0.05, 1, 1, 1, 1, 1, 0]]) # your boxes
      ids = np.array([0,1]) # your boxes ids (optional)

      复制代码
      pseudo_points = np.random.randn(100, 3) # your points
      
      vi.add_points(pseudo_points, radius=4, scatter_filed=pseudo_points[:, 0])
      vi.add_3D_boxes(pseudo_boxes, ids=ids,caption_size=(0.09,0.09))
      vi.add_spheres(pseudo_boxes[:, 0:3],radius=0.03,res=10,color='red',del_after_show=False, alpha=1) # Draw motion track
      vi.show_3D() # press the Q or Enter or ESC key to view
  • 项目获取

相关推荐
绿蕉5 小时前
高精地图:自动驾驶的“数字神经网络“
自动驾驶·高精地图
WWZZ20256 小时前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
luoganttcc6 小时前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
后端小张11 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构
paopao_wu1 天前
目标检测YOLO[04]:跑通最简单的YOLO模型训练
人工智能·yolo·目标检测
Coding茶水间1 天前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
懷淰メ2 天前
python3GUI--【AI加持】基于PyQt5+YOLOv8+DeepSeek的智能球体检测系统:(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·球体检测
智能交通技术2 天前
iTSTech:自动驾驶技术综述报告 2025
人工智能·机器学习·自动驾驶
攻城狮7号3 天前
小米具身大模型 MiMo-Embodied 发布并全面开源:统一机器人与自动驾驶
人工智能·机器人·自动驾驶·开源大模型·mimo-embodied·小米具身大模型
AI即插即用3 天前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer