3D目标检测跟踪 | 基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化

  • 项目应用场景
    • 面向自动驾驶场景的 3D 目标检测+目标跟踪,基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化查看。
  • 项目效果
  • 项目细节 ==> 具体参见项目 README.md
    • (1) Kitti detection 数据集结构
bash 复制代码
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
    • (2) Kitti tracking 数据集结构
bash 复制代码
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
    • (3) 安装依赖
bash 复制代码
pip install python3 \
            numpy==1.21.3 \
            vedo==2021.0.6 \
            vtk==9.0.3 \
            opencv==4.5.4.58 \
            matplotlib==3.4.3
    • (4) 执行示例

      from viewer.viewer import Viewer
      import numpy as np

      vi = Viewer() # set box_type='OpenPCDet' if you use OpenPCDet boxes
      len_dataset = 1000

      for i in range(len_dataset):
      pseudo_boxes = np.array([[i0.05, -1, 1, 1, 1, 1, 0], [i0.05, 1, 1, 1, 1, 1, 0]]) # your boxes
      ids = np.array([0,1]) # your boxes ids (optional)

      复制代码
      pseudo_points = np.random.randn(100, 3) # your points
      
      vi.add_points(pseudo_points, radius=4, scatter_filed=pseudo_points[:, 0])
      vi.add_3D_boxes(pseudo_boxes, ids=ids,caption_size=(0.09,0.09))
      vi.add_spheres(pseudo_boxes[:, 0:3],radius=0.03,res=10,color='red',del_after_show=False, alpha=1) # Draw motion track
      vi.show_3D() # press the Q or Enter or ESC key to view
  • 项目获取

相关推荐
m0_650108246 小时前
WorldSplat:面向自动驾驶的 4D 场景生成与新颖视图合成框架
论文阅读·自动驾驶·高保真·时空一致性·4d驾驶场景合成·生成式与重建式融合·4d高斯
yuanmenghao7 小时前
自动驾驶中间件iceoryx - 内存与 Chunk 管理(三)
数据结构·c++·算法·链表·中间件·自动驾驶
才不做选择7 小时前
基于 YOLOv8 的部落冲突 (Clash of Clans) 目标检测系统
人工智能·python·yolo·目标检测
AI探索先锋7 小时前
高效!YOLO+SAM 目标检测与图像分割融合实战
人工智能·计算机视觉·目标跟踪
yuanmenghao9 小时前
现代汽车中的通信方式 ——以智能驾驶系统为例
人工智能·自动驾驶·汽车·信息与通信
数据分享者9 小时前
175万部影视车辆全景数据集-品牌车型年份类型标注-IMDB链接-全球电影汽车文化研究与AI识别训练权威资源-适用于影视AI车辆识别广告投放自动驾驶算法开发
人工智能·自动驾驶·汽车
melonbo10 小时前
自动驾驶场景下的图像预处理
人工智能·机器学习·自动驾驶