3D目标检测跟踪 | 基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化

  • 项目应用场景
    • 面向自动驾驶场景的 3D 目标检测+目标跟踪,基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化查看。
  • 项目效果
  • 项目细节 ==> 具体参见项目 README.md
    • (1) Kitti detection 数据集结构
bash 复制代码
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
    • (2) Kitti tracking 数据集结构
bash 复制代码
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
    • (3) 安装依赖
bash 复制代码
pip install python3 \
            numpy==1.21.3 \
            vedo==2021.0.6 \
            vtk==9.0.3 \
            opencv==4.5.4.58 \
            matplotlib==3.4.3
    • (4) 执行示例

      from viewer.viewer import Viewer
      import numpy as np

      vi = Viewer() # set box_type='OpenPCDet' if you use OpenPCDet boxes
      len_dataset = 1000

      for i in range(len_dataset):
      pseudo_boxes = np.array([[i0.05, -1, 1, 1, 1, 1, 0], [i0.05, 1, 1, 1, 1, 1, 0]]) # your boxes
      ids = np.array([0,1]) # your boxes ids (optional)

      pseudo_points = np.random.randn(100, 3) # your points
      
      vi.add_points(pseudo_points, radius=4, scatter_filed=pseudo_points[:, 0])
      vi.add_3D_boxes(pseudo_boxes, ids=ids,caption_size=(0.09,0.09))
      vi.add_spheres(pseudo_boxes[:, 0:3],radius=0.03,res=10,color='red',del_after_show=False, alpha=1) # Draw motion track
      vi.show_3D() # press the Q or Enter or ESC key to view
      
  • 项目获取

相关推荐
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
阿_旭10 小时前
基于YOLO11/v10/v8/v5深度学习的煤矿传送带异物检测系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·目标检测·yolo11
云卓科技10 小时前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
TsingtaoAI10 小时前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱
极智视界11 小时前
无人机场景数据集大全「包含数据标注+划分脚本+训练脚本」 (持续原地更新)
算法·yolo·目标检测·数据集标注·分割算法·算法训练·无人机场景数据集
LNTON羚通14 小时前
CPU算法分析LiteAIServer视频智能分析平台视频智能分析:抖动、过亮与过暗检测技术
大数据·目标检测·音视频·视频监控
handsomeboysk15 小时前
mAP的定义
人工智能·计算机视觉·目标跟踪
深度学习lover16 小时前
<项目代码>YOLOv8 夜间车辆识别<目标检测>
人工智能·yolo·目标检测·计算机视觉·表情识别·夜间车辆识别
高登先生17 小时前
京津冀自动驾驶技术行业盛会|2025北京自动驾驶技术展会
大数据·人工智能·科技·机器人·自动驾驶