3D目标检测跟踪 | 基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化

  • 项目应用场景
    • 面向自动驾驶场景的 3D 目标检测+目标跟踪,基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化查看。
  • 项目效果
  • 项目细节 ==> 具体参见项目 README.md
    • (1) Kitti detection 数据集结构
bash 复制代码
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
    • (2) Kitti tracking 数据集结构
bash 复制代码
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
    • (3) 安装依赖
bash 复制代码
pip install python3 \
            numpy==1.21.3 \
            vedo==2021.0.6 \
            vtk==9.0.3 \
            opencv==4.5.4.58 \
            matplotlib==3.4.3
    • (4) 执行示例

      from viewer.viewer import Viewer
      import numpy as np

      vi = Viewer() # set box_type='OpenPCDet' if you use OpenPCDet boxes
      len_dataset = 1000

      for i in range(len_dataset):
      pseudo_boxes = np.array([[i0.05, -1, 1, 1, 1, 1, 0], [i0.05, 1, 1, 1, 1, 1, 0]]) # your boxes
      ids = np.array([0,1]) # your boxes ids (optional)

      复制代码
      pseudo_points = np.random.randn(100, 3) # your points
      
      vi.add_points(pseudo_points, radius=4, scatter_filed=pseudo_points[:, 0])
      vi.add_3D_boxes(pseudo_boxes, ids=ids,caption_size=(0.09,0.09))
      vi.add_spheres(pseudo_boxes[:, 0:3],radius=0.03,res=10,color='red',del_after_show=False, alpha=1) # Draw motion track
      vi.show_3D() # press the Q or Enter or ESC key to view
  • 项目获取

相关推荐
欢乐熊嵌入式编程6 小时前
智能手表集成测试报告(Integration Test Report)
嵌入式硬件·物联网·目标跟踪·集成测试·智能手表
巷9557 小时前
YOLO v3:目标检测领域的质变性飞跃
人工智能·yolo·目标检测
软件派8 小时前
基于YOLO算法的目标检测系统实现指南
算法·yolo·目标检测
康谋自动驾驶14 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
深蓝学院15 小时前
密西根大学新作——LightEMMA:自动驾驶中轻量级端到端多模态模型
人工智能·机器学习·自动驾驶
欢乐熊嵌入式编程19 小时前
智能手表项目风险评估与应对计划书
嵌入式硬件·物联网·目标跟踪·智能手表
Wnq1007220 小时前
基于 NanoDet 的工厂巡检机器人目标识别系统研究与实现
人工智能·机器学习·计算机视觉·目标跟踪·机器人·巡检机器人
巷9551 天前
YOLO v2:目标检测领域的全面性进化
人工智能·yolo·目标检测
孚为智能科技1 天前
无人机箱号识别系统结合5G技术的应用实践
图像处理·人工智能·5g·目标检测·计算机视觉·视觉检测·无人机
深度学习机器学习1 天前
计算机视觉最不卷的方向:三维重建学习路线梳理
人工智能·深度学习·学习·yolo·目标检测·机器学习·计算机视觉