1.0 Hadoop 教程

1.0 Hadoop 教程

分类 Hadoop 教程

Hadoop 是一个开源的分布式计算和存储框架,由 Apache 基金会开发和维护。

Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。

Hadoop 使用 Java 开发,所以可以在多种不同硬件平台的计算机上部署和使用。其核心部件包括分布式文件系统 (Hadoop DFS,HDFS) 和 MapReduce。

Hadoop 历史

2003 年和 2004 年,Google 公司先后发表了两篇著名的论文 GFS 和 MapReduce。

这两篇论文和 2006 年发表的 BigTable 成为了现在著名的"Google 三大论文"。

Doug Cutting 在受到了这些理论的影响后开始了 Hadoop 的开发。

Hadoop 包含了两大核心组件。在 Google 的论文中,GFS 是一个在庞大的计算机集群中运行的分布式文件系统,在 Hadoop 中 HDFS 实现了它的功能。MapReduce 是一个分布式计算的方式,Hadoop 用同名称的 MapReduce 框架实现了它的功能。我们会在之后的 MapReduce 章节中详细介绍它。 从 2008 年开始,Hadoop 作为 Apache 顶级项目存在。它与它的众多子项目广泛应用于包括 Yahoo、阿里巴巴、腾讯等大型网络服务企业,并被 IBM、Intel、Microsoft 等平台公司列为支持对象。

Hadoop 的作用

Hadoop 的作用非常简单,就是在多计算机集群环境中营造一个统一而稳定的存储和计算环境,并能为其他分布式应用服务提供平台支持。

也就是说, Hadoop 在某种程度上将多台计算机组织成了一台计算机(做同一件事),那么 HDFS 就相当于这台计算机的硬盘,而 MapReduce 就是这台计算机的 CPU 控制器。

相关推荐
每日新鲜事29 分钟前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能
在未来等你1 小时前
Kafka面试精讲 Day 15:跨数据中心复制与灾备
大数据·分布式·面试·kafka·消息队列
计算机编程-吉哥3 小时前
大数据毕业设计-基于Python的中文起点网小说数据分析平台(高分计算机毕业设计选题·定制开发·真正大数据)
大数据·hadoop·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
Hello.Reader3 小时前
Kafka 设计与实现动机、持久化、效率、生产者/消费者、事务、复制、日志压缩与配额
分布式·kafka
失散134 小时前
分布式专题——5 大厂Redis高并发缓存架构实战与性能优化
java·redis·分布式·缓存·架构
鸿乃江边鸟4 小时前
Flink中的 BinaryRowData 以及大小端
大数据·sql·flink
MicroTech20255 小时前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
b***25115 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
Agatha方艺璇5 小时前
Hive基础简介
数据仓库·hive·hadoop
Flink_China5 小时前
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
大数据·flink