论文笔记:A Simple and Effective Pruning Approach for Large Language Models

iclr 2024 reviewer 评分 5668

1 intro

  • 大模型网络剪枝的paper
    • 在努力保持性能的同时,舍弃网络权重的一个子集
  • 现有方法
    • 要么需要重新训练
      • 这对于十亿级别的LLMs来说往往不现实
    • 要么需要解决依赖于二阶信息的权重重建问题
      • 这同样可能带来高昂的计算成本
  • ------>引入了一种新颖、简单且有效的剪枝方法,名为Wanda (Pruning by Weights and activations)
    • 在每个输出的基础上,剪枝那些乘以相应输入激活后幅度最小的权重
    • 无需重新训练或权重更新,剪枝后的LLM可以即刻使用

2 方法

2.1 motivation

  • 考虑一个带有两个输入及其对应权重的神经元:y = w1x1 + w2x2,其中|w1| ≤ |w2|。
    • 现在假设目标是选择一个权重进行移除,同时使输出变化最小。
    • 标准的幅度剪枝方法总是会移除权重w1
      • 如果输入特征x1和x2的幅度相似,这可能是一个好策略。
      • 然而,最近在LLMs中观察到,两个输入特征的规模可能差异很大。例如,可能|x1| ≫ |x2|,结果是|w1x1| ≫ |w2x2|。
      • 在这种情况下,我们应该移除权重w2,因为这种移除明显对神经元输出y的影响小于移除权重w1。
  • 这个动机示例与最简单的线性层一起暗示了幅度剪枝的一个主要限制
    • 它没有考虑输入激活,输入激活在决定神经元输出时可能与权重幅度同样重要。
    • 对于剪枝LLMs,这一点尤其关键,考虑到在其中发现的突出大幅度特征
    • ------>提出了一种专门为LLMs设计的剪枝指标,以处理此类限制,同时也保持了幅度剪枝的简单性

2.2 剪枝指标

2.3 和现有方法的对比

3 实验

3.1 效果比较

3.2 速度比较

3.3 finetune 剪枝后的LLM可以接近不剪枝的LLM

3.4 校准数据(X)的影响

相关推荐
阿杰学AI7 小时前
AI核心知识44——大语言模型之Reward Hacking(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai安全·奖励欺骗·reward hacking
檐下翻书1739 小时前
互联网企业组织结构图在线设计 扁平化架构模板
论文阅读·人工智能·信息可视化·架构·流程图·论文笔记
海森大数据11 小时前
用最通用的语言模型,解决最专业的几何问题:Token-Mol的“反直觉”革命
人工智能·语言模型·自然语言处理
kebijuelun12 小时前
DeepSeek-V3.2: Pushing the Frontier of Open Large Language Models
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客12 小时前
Jina-VLM:小型多语言视觉语言模型
数据库·人工智能·elasticsearch·搜索引擎·ai·语言模型·jina
Sherlock Ma13 小时前
OpenAI新论文!GPT-5-Thinking新训练方法
人工智能·gpt·深度学习·语言模型·自然语言处理·chatgpt·openai
EEPI15 小时前
【论文阅读】VLA-pilot:Towards Deploying VLA without Fine-Tuning
论文阅读
larance15 小时前
nn.Sequential 与nn.ModuleList 区别
语言模型
一碗白开水一15 小时前
【论文阅读】VQ-VAE|Neural Discrete Representation Learning首个提出 codebook 机制的生成模型
论文阅读·人工智能·pytorch·深度学习·算法·迁移学习
Bruce-XIAO16 小时前
MOE-混合专家架构论文阅读
人工智能·语言模型·moe