论文笔记:A Simple and Effective Pruning Approach for Large Language Models

iclr 2024 reviewer 评分 5668

1 intro

  • 大模型网络剪枝的paper
    • 在努力保持性能的同时,舍弃网络权重的一个子集
  • 现有方法
    • 要么需要重新训练
      • 这对于十亿级别的LLMs来说往往不现实
    • 要么需要解决依赖于二阶信息的权重重建问题
      • 这同样可能带来高昂的计算成本
  • ------>引入了一种新颖、简单且有效的剪枝方法,名为Wanda (Pruning by Weights and activations)
    • 在每个输出的基础上,剪枝那些乘以相应输入激活后幅度最小的权重
    • 无需重新训练或权重更新,剪枝后的LLM可以即刻使用

2 方法

2.1 motivation

  • 考虑一个带有两个输入及其对应权重的神经元:y = w1x1 + w2x2,其中|w1| ≤ |w2|。
    • 现在假设目标是选择一个权重进行移除,同时使输出变化最小。
    • 标准的幅度剪枝方法总是会移除权重w1
      • 如果输入特征x1和x2的幅度相似,这可能是一个好策略。
      • 然而,最近在LLMs中观察到,两个输入特征的规模可能差异很大。例如,可能|x1| ≫ |x2|,结果是|w1x1| ≫ |w2x2|。
      • 在这种情况下,我们应该移除权重w2,因为这种移除明显对神经元输出y的影响小于移除权重w1。
  • 这个动机示例与最简单的线性层一起暗示了幅度剪枝的一个主要限制
    • 它没有考虑输入激活,输入激活在决定神经元输出时可能与权重幅度同样重要。
    • 对于剪枝LLMs,这一点尤其关键,考虑到在其中发现的突出大幅度特征
    • ------>提出了一种专门为LLMs设计的剪枝指标,以处理此类限制,同时也保持了幅度剪枝的简单性

2.2 剪枝指标

2.3 和现有方法的对比

3 实验

3.1 效果比较

3.2 速度比较

3.3 finetune 剪枝后的LLM可以接近不剪枝的LLM

3.4 校准数据(X)的影响

相关推荐
研梦非凡15 分钟前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
天上的光7 小时前
大模型——剪枝、量化、蒸馏、二值化
算法·机器学习·剪枝
z千鑫12 小时前
【OpenAI】性价比极高的轻量级多模态模型GPT-4.1-mini介绍 + API KEY的使用教程!
人工智能·gpt·ai·语言模型·chatgpt
张较瘦_13 小时前
[论文阅读] 人工智能 + 软件工程 | 大模型破局跨平台测试!LLMRR让iOS/安卓/鸿蒙脚本无缝迁移
论文阅读·人工智能·ios
Matrix_111 天前
论文阅读:VGGT Visual Geometry Grounded Transformer
论文阅读·计算摄影
CV-杨帆1 天前
论文阅读:ICLR 2021 BAG OF TRICKS FOR ADVERSARIAL TRAINING
论文阅读
知来者逆1 天前
视觉语言模型应用开发——Qwen 2.5 VL模型视频理解与定位能力深度解析及实践指南
人工智能·语言模型·自然语言处理·音视频·视觉语言模型·qwen 2.5 vl
闲看云起1 天前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer
学历真的很重要1 天前
Claude Code Windows 原生版安装指南
人工智能·windows·后端·语言模型·面试·go
eqwaak01 天前
Matplotlib 动态显示详解:技术深度与创新思考
网络·python·网络协议·tcp/ip·语言模型·matplotlib