【大语言模型】轻松本地部署Stable Diffusion

硬件要求:

  • 配备至少8GB VRAM的GPU,如果你的电脑只有CPU,请看到最后。
  • 根据部署规模,需要足够的CPU和RAM。

软件要求:

  • Python 3.7或更高版本。
  • 支持NVIDIA GPU的PyTorch。
  • Hugging Face的Diffusers库。
  • Hugging Face的Transformers库。

步骤:

1. 设置Python环境

安装Python并创建一个虚拟环境:

python 复制代码
python -m venv stable-env
source stable-env/bin/activate  # 在Windows上使用 `stable-env\Scripts\activate`

2. 安装依赖

安装CUDA支持的PyTorch:

python 复制代码
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cuda113

安装diffusers和transformers:

python 复制代码
pip install diffusers transformers
  1. 下载和加载模型

使用Hugging Face模型库下载Stable Diffusion:

python 复制代码
from diffusers import StableDiffusionPipeline
model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token="YOUR_HUGGINGFACE_TOKEN")
model.to("cuda")

4. 运行模型:

根据提示生成图像:

python 复制代码
prompt = "A girl who is play cello at a Church"
image = model(prompt)["sample"][0]
image.save("output.png")

生成的图片长这样:

如果您没有GPU,仍然可以部署并使用Stable Diffusion,但您需要为处理时间显著变慢做好准备,尤其是对于像图像生成这样的计算密集型任务。以下是如何在没有GPU的系统上管理和优化Stable Diffusion的使用方法:

当只使用CPU时,关键是要合理设定性能预期。在GPU上可能需要几秒钟的图像生成任务,在CPU上可能需要几分钟。

在CPU上运行的步骤,和GPU类似:

  • 修改您的设置以确保它在CPU上运行 ,通过在代码中明确指定设备。例如,如果您使用的是diffusers库,可以按以下方式调整您的管道设置:
python 复制代码
from diffusers import StableDiffusionPipeline

# 加载模型,设置设备为CPU
model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)
model.to("cpu")

大家有任何问题可以在留言区讨论。

相关推荐
笨笨聊运维10 分钟前
CentOS官方不维护版本,配置python升级方法,无损版
linux·python·centos
Gerardisite13 分钟前
如何在微信个人号开发中有效管理API接口?
java·开发语言·python·微信·php
小毛驴85043 分钟前
软件设计模式-装饰器模式
python·设计模式·装饰器模式
serve the people1 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
闲人编程1 小时前
Python的导入系统:模块查找、加载和缓存机制
java·python·缓存·加载器·codecapsule·查找器
weixin_457760001 小时前
Python 数据结构
数据结构·windows·python
0***K8921 小时前
前端机器学习
人工智能·机器学习
陈天伟教授1 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108242 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动