【大语言模型】轻松本地部署Stable Diffusion

硬件要求:

  • 配备至少8GB VRAM的GPU,如果你的电脑只有CPU,请看到最后。
  • 根据部署规模,需要足够的CPU和RAM。

软件要求:

  • Python 3.7或更高版本。
  • 支持NVIDIA GPU的PyTorch。
  • Hugging Face的Diffusers库。
  • Hugging Face的Transformers库。

步骤:

1. 设置Python环境

安装Python并创建一个虚拟环境:

python 复制代码
python -m venv stable-env
source stable-env/bin/activate  # 在Windows上使用 `stable-env\Scripts\activate`

2. 安装依赖

安装CUDA支持的PyTorch:

python 复制代码
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cuda113

安装diffusers和transformers:

python 复制代码
pip install diffusers transformers
  1. 下载和加载模型

使用Hugging Face模型库下载Stable Diffusion:

python 复制代码
from diffusers import StableDiffusionPipeline
model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token="YOUR_HUGGINGFACE_TOKEN")
model.to("cuda")

4. 运行模型:

根据提示生成图像:

python 复制代码
prompt = "A girl who is play cello at a Church"
image = model(prompt)["sample"][0]
image.save("output.png")

生成的图片长这样:

如果您没有GPU,仍然可以部署并使用Stable Diffusion,但您需要为处理时间显著变慢做好准备,尤其是对于像图像生成这样的计算密集型任务。以下是如何在没有GPU的系统上管理和优化Stable Diffusion的使用方法:

当只使用CPU时,关键是要合理设定性能预期。在GPU上可能需要几秒钟的图像生成任务,在CPU上可能需要几分钟。

在CPU上运行的步骤,和GPU类似:

  • 修改您的设置以确保它在CPU上运行 ,通过在代码中明确指定设备。例如,如果您使用的是diffusers库,可以按以下方式调整您的管道设置:
python 复制代码
from diffusers import StableDiffusionPipeline

# 加载模型,设置设备为CPU
model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)
model.to("cpu")

大家有任何问题可以在留言区讨论。

相关推荐
闲人编程几秒前
消息通知系统实现:构建高可用、可扩展的企业级通知服务
java·服务器·网络·python·消息队列·异步处理·分发器
sunfove4 分钟前
致暗夜行路者:科研低谷期的自我心理重建
人工智能
大神君Bob16 分钟前
【AI办公自动化】如何使用Pytho让Excel表格处理自动化
python
Heorine16 分钟前
数学建模 绘图 图表 可视化(6)
python·数学建模·数据可视化
栈与堆20 分钟前
LeetCode-1-两数之和
java·数据结构·后端·python·算法·leetcode·rust
GAOJ_K22 分钟前
丝杆模组精度下降的预警信号
人工智能·科技·机器人·自动化·制造
lusasky23 分钟前
Claude Code 2.1.2最佳实战
人工智能
●VON24 分钟前
跨模态暗流:多模态安全攻防全景解析
人工智能·学习·安全·von
柯南小海盗27 分钟前
从“会聊天的AI”到“全能助手”:大语言模型科普
人工智能·语言模型·自然语言处理
焦耳热科技前沿30 分钟前
中科大EMA:3秒焦耳热一步合成双功能催化剂用于甲醇氧化协同高效制氢
大数据·人工智能·自动化·能源·材料工程