深度学习 Lecture 8 决策树

一、决策树模型(Decision Tree Model)

椭圆形代表决策节点(decison nodes),矩形节点代表叶节点(leaf nodes),方向上的值代表属性的值,

构建决策树的学习过程:

第一步:决定在根节点上的特征(也就是第一个分开样本的特征)

第二步:决定在内部节点上的特征(第二个、第三个分开样本的特征)

第三步:顺着特征写出特定的值的输出值

第一个问题:如何选择在每个节点上使用划分的特征呢?

尽量要保持最大的纯度(Maximize purity),纯度代表说,尽可能能直接完成分类(也就是尽量把这几个类的子集分开)

第二个问题:什么时候停止划分?

  1. 当一个节点能百分百判断一个类的时候

2.当划分节点将会导致树超过最大深度时

  1. 想避免过拟合时

二、测量纯度(Measuring purity)

熵:对一组数据不纯度的衡量

熵函数一般用H(p_1)表示

可以看到,当样本集是五五开的时候,这条曲线是最高的,也就是熵最大。

相反,如果样本集里都是猫或者都是狗的话,熵为0.

熵函数的方程:

相关推荐
子燕若水2 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室3 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿3 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫3 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说4 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
大千AI助手4 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记4 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元4 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术4 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端