深度学习 Lecture 8 决策树

一、决策树模型(Decision Tree Model)

椭圆形代表决策节点(decison nodes),矩形节点代表叶节点(leaf nodes),方向上的值代表属性的值,

构建决策树的学习过程:

第一步:决定在根节点上的特征(也就是第一个分开样本的特征)

第二步:决定在内部节点上的特征(第二个、第三个分开样本的特征)

第三步:顺着特征写出特定的值的输出值

第一个问题:如何选择在每个节点上使用划分的特征呢?

尽量要保持最大的纯度(Maximize purity),纯度代表说,尽可能能直接完成分类(也就是尽量把这几个类的子集分开)

第二个问题:什么时候停止划分?

  1. 当一个节点能百分百判断一个类的时候

2.当划分节点将会导致树超过最大深度时

  1. 想避免过拟合时

二、测量纯度(Measuring purity)

熵:对一组数据不纯度的衡量

熵函数一般用H(p_1)表示

可以看到,当样本集是五五开的时候,这条曲线是最高的,也就是熵最大。

相反,如果样本集里都是猫或者都是狗的话,熵为0.

熵函数的方程:

相关推荐
用户6915811416530 分钟前
Ascend Extension for PyTorch的源码解析
人工智能
-Nemophilist-1 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗3 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
3 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习