深度学习 Lecture 8 决策树

一、决策树模型(Decision Tree Model)

椭圆形代表决策节点(decison nodes),矩形节点代表叶节点(leaf nodes),方向上的值代表属性的值,

构建决策树的学习过程:

第一步:决定在根节点上的特征(也就是第一个分开样本的特征)

第二步:决定在内部节点上的特征(第二个、第三个分开样本的特征)

第三步:顺着特征写出特定的值的输出值

第一个问题:如何选择在每个节点上使用划分的特征呢?

尽量要保持最大的纯度(Maximize purity),纯度代表说,尽可能能直接完成分类(也就是尽量把这几个类的子集分开)

第二个问题:什么时候停止划分?

  1. 当一个节点能百分百判断一个类的时候

2.当划分节点将会导致树超过最大深度时

  1. 想避免过拟合时

二、测量纯度(Measuring purity)

熵:对一组数据不纯度的衡量

熵函数一般用H(p_1)表示

可以看到,当样本集是五五开的时候,这条曲线是最高的,也就是熵最大。

相反,如果样本集里都是猫或者都是狗的话,熵为0.

熵函数的方程:

相关推荐
聆风吟º8 分钟前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º3 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144874 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile4 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5774 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert