Matlab分段微分方程组拟合【案例源码+视频教程】

专栏导读

  • 作者简介:工学博士,高级工程师,专注于工业软件算法研究
  • 本文已收录于专栏:《复杂函数拟合案例分享 》本专栏旨在提供 1.以案例 的形式讲解各类复杂函数拟合的程序实现方法,并提供所有案例完整源码 ;2.复杂函数 包含:分段函数、积分函数、常/偏微分函数、隐函数、方程组、级数函数、多参数函数;3.拟合工具 是Matlab种的lsqcurvefit, nlinfit,神经网络,ga遗传算法,MultiStart全局优化算法等;4.拟合案例均源自科研实践 中遇到的案例,文本教程+视频教程+案例源码 ,三向强化学习!提高大家解决实际数学建模的问题。
  • 案例源码地址
  • 视频课程地址https://www.bilibili.com/video/BV1bQ4y1U7mu/?spm_id_from=333.337.search-card.all.click
  • 欢迎订阅专栏,订阅用户可私聊进入Matlab编程交流群 (知识交流、问题解答),并获赠丰厚的Matlab相关学习资料教材、源码、视频课
  • 专栏订阅地址: https://blog.csdn.net/u010542847/category_12576325.html

【总体简介】💻🔍

你将获得分段微分方程组拟合案例【matlab源码】+视频程(试看)

获取连接: Matlab分段微分方程组拟合【案例源码】

本案例通过Matlab中的lsqcurvefit()实现分段微分方程组的拟合,案例有三个难点:1.自定义拟合函数通过微分方程(求解)表示;2.微分方程分段;3.微分方程本身是方程组的形式。具体方程形式如下图所示。

需要说明的是由于待拟合参数过多,所以由于lsqcurvefit()拟合工具自身局限性,最终本案例拟合的精度并不高,但是本拟合案例的主要目的是提供一种方法,当待拟合参数较少时,会有一个理想的结果。程序可以成功运行进行迭代拟合,并得到拟合结果。拟合精度不够高的原因主要在于方程过于复杂,待拟合参数过多,超出lsqcurvefit本身适合的参数个数,如果参数个数<=5,是可以得到较好的拟合结果。

【拟合结果】

拟合精度不够高的原因主要在于方程过于复杂,待拟合参数过多,超出lsqcurvefit本身适合的参数个数,如果参数个数<=5,是可以得到较好的拟合结果。

【视频教程】

本案例已收录至b站的《Matlab复杂函数非线性拟合》专题课程【Matlab复杂函数非线性拟合专题/lsqcurvefit/nlinfit/积分函数、微分函数、隐函数、方程组、最小二乘法/机器学习/神经网络/编程/人工智能】 Matlab复杂函数非线性拟合专题/lsqcurvefit/nlinfit/积分函数、微分函数、隐函数、方程组、最小二乘法/机器学习/神经网络/编程/人工智能_哔哩哔哩_bilibili

相关推荐
三克的油6 小时前
数学建模-day4
数学建模
CoderCodingNo7 小时前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
大闲在人7 小时前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋8 小时前
443. 压缩字符串-python-双指针
算法
Charlie_lll8 小时前
力扣解题-移动零
后端·算法·leetcode
chaser&upper8 小时前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_499771558 小时前
C++中的组合模式
开发语言·c++·算法
iAkuya8 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼8 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck8 小时前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl