基于瞬时频率的语言信号清/浊音判决和高音检测(MATLAB R2021)

语音是由气流激励声道从嘴唇或鼻孔辐射出来而产生的。根据声带是否振动,发音可分为浊音和清音。浊音和清音有明显的区别,浊音具有周期信号的特征,而清音则具有随机噪声的特征;浊音在频域上具有共振峰结构,其能量主要集中在低频带,清音的振幅值相对较小,在时域和频域没有明显的规律性。清音和浊音的正确判断在语音识别、语音合成、语音编码中具有重要作用。传统的清浊音区分方法有:短时能量法、短时自相关函数法和过零点法等。由于实际语音常有连读以及单音素发音过短的情况,现有的清浊音判断方法也会出现判断不准确的情况。

程序运行环境为MATLAB R2021B,为基于瞬时频率的语言信号清/浊音判决和高音检测,部分代码如下:

Matlab 复制代码
%% Comparison with Matlab'2020 built-infunction (pitch) (Method: SRH (Drugman 2011)%%%%
[f0_matlab_value,idx] = pitch(s,fs, ...
            'Method','SRH', ...
            'WindowLength',framedur*fs/1000, ...
            'OverlapLength',timestep*fs/1000, ...
            'Range',[f0min,f0max], ...
            'MedianFilterLength',smoothing_dur*fs/1000);
hr = harmonicRatio(s,fs,"Window",hamming(framedur*fs/1000,'periodic'),...
    "OverlapLength",timestep*fs/1000);
hr_threshold=0.4;
f0_matlab_value(hr<hr_threshold)=0;
%完整代码:mbd.pub/o/bread/mbd-ZZ6blJtu

%%%%%%%% Draw extracted f0 %%%%%%%%%%%%%%%%%%
subplot(3,1,3)
f0_matlab_time = 1000*(idx - 1)/fs;
vuv_matlab=(hr<hr_threshold);
plot(f0_matlab_time,f0_matlab_value)
hold on
plot(f0_ref_time,f0_ref_value)
xlabel('Time (s)')
ylabel('Pitch (Hz)')
legend('F0 est by Matlab','Gnd truth f0')
title('F0 contour extracted from Matlab built-in function (pitch)')
相关推荐
deephub10 分钟前
量子机器学习入门:三种数据编码方法对比与应用
人工智能·机器学习·量子计算·数据编码·量子机器学习
ゞ 正在缓冲99%…12 分钟前
leetcode101.对称二叉树
算法
AI 嗯啦13 分钟前
计算机视觉----opencv实战----指纹识别的案例
人工智能·opencv·计算机视觉
max50060017 分钟前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
trsoliu18 分钟前
前端基于 TypeScript 使用 Mastra 来开发一个 AI 应用 / AI 代理(Agent)
前端·人工智能
Pocker_Spades_A21 分钟前
Python快速入门专业版(二十九):函数返回值:多返回值、None与函数嵌套调用
服务器·开发语言·python
良木林25 分钟前
浅谈原型。
开发语言·javascript·原型模式
烈风36 分钟前
004 Rust控制台打印输出
开发语言·后端·rust
YuTaoShao44 分钟前
【LeetCode 每日一题】3000. 对角线最长的矩形的面积
算法·leetcode·职场和发展
2zcode1 小时前
基于Matlab可见光通信系统中OOK调制的误码率性能建模与分析
算法·matlab·php