基于瞬时频率的语言信号清/浊音判决和高音检测(MATLAB R2021)

语音是由气流激励声道从嘴唇或鼻孔辐射出来而产生的。根据声带是否振动,发音可分为浊音和清音。浊音和清音有明显的区别,浊音具有周期信号的特征,而清音则具有随机噪声的特征;浊音在频域上具有共振峰结构,其能量主要集中在低频带,清音的振幅值相对较小,在时域和频域没有明显的规律性。清音和浊音的正确判断在语音识别、语音合成、语音编码中具有重要作用。传统的清浊音区分方法有:短时能量法、短时自相关函数法和过零点法等。由于实际语音常有连读以及单音素发音过短的情况,现有的清浊音判断方法也会出现判断不准确的情况。

程序运行环境为MATLAB R2021B,为基于瞬时频率的语言信号清/浊音判决和高音检测,部分代码如下:

Matlab 复制代码
%% Comparison with Matlab'2020 built-infunction (pitch) (Method: SRH (Drugman 2011)%%%%
[f0_matlab_value,idx] = pitch(s,fs, ...
            'Method','SRH', ...
            'WindowLength',framedur*fs/1000, ...
            'OverlapLength',timestep*fs/1000, ...
            'Range',[f0min,f0max], ...
            'MedianFilterLength',smoothing_dur*fs/1000);
hr = harmonicRatio(s,fs,"Window",hamming(framedur*fs/1000,'periodic'),...
    "OverlapLength",timestep*fs/1000);
hr_threshold=0.4;
f0_matlab_value(hr<hr_threshold)=0;
%完整代码:mbd.pub/o/bread/mbd-ZZ6blJtu

%%%%%%%% Draw extracted f0 %%%%%%%%%%%%%%%%%%
subplot(3,1,3)
f0_matlab_time = 1000*(idx - 1)/fs;
vuv_matlab=(hr<hr_threshold);
plot(f0_matlab_time,f0_matlab_value)
hold on
plot(f0_ref_time,f0_ref_value)
xlabel('Time (s)')
ylabel('Pitch (Hz)')
legend('F0 est by Matlab','Gnd truth f0')
title('F0 contour extracted from Matlab built-in function (pitch)')
相关推荐
虾球xz1 分钟前
游戏引擎学习第281天:在房间之间为摄像机添加动画效果
c++·人工智能·学习·游戏引擎
冷yan~7 分钟前
GitHub文档加载器设计与实现
java·人工智能·spring·ai·github·ai编程
willhu200812 分钟前
Tensorflow2保存和加载模型
深度学习·机器学习·tensorflow
lsswear15 分钟前
php fiber 应用
开发语言·php
(・Д・)ノ20 分钟前
python打卡day28
开发语言·python
保利九里24 分钟前
java中的方法详解
java·开发语言·python
灏瀚星空36 分钟前
Python标准库完全指南:os、sys与math模块详解与实战应用
开发语言·python·microsoft
Sylvan Ding37 分钟前
远程主机状态监控-GPU服务器状态监控-深度学习服务器状态监控
运维·服务器·深度学习·监控·远程·gpu状态
坐吃山猪38 分钟前
Python-Flask-Dive
开发语言·python·flask
Humbunklung39 分钟前
从数据层面减少过拟合现象
机器学习