基于瞬时频率的语言信号清/浊音判决和高音检测(MATLAB R2021)

语音是由气流激励声道从嘴唇或鼻孔辐射出来而产生的。根据声带是否振动,发音可分为浊音和清音。浊音和清音有明显的区别,浊音具有周期信号的特征,而清音则具有随机噪声的特征;浊音在频域上具有共振峰结构,其能量主要集中在低频带,清音的振幅值相对较小,在时域和频域没有明显的规律性。清音和浊音的正确判断在语音识别、语音合成、语音编码中具有重要作用。传统的清浊音区分方法有:短时能量法、短时自相关函数法和过零点法等。由于实际语音常有连读以及单音素发音过短的情况,现有的清浊音判断方法也会出现判断不准确的情况。

程序运行环境为MATLAB R2021B,为基于瞬时频率的语言信号清/浊音判决和高音检测,部分代码如下:

Matlab 复制代码
%% Comparison with Matlab'2020 built-infunction (pitch) (Method: SRH (Drugman 2011)%%%%
[f0_matlab_value,idx] = pitch(s,fs, ...
            'Method','SRH', ...
            'WindowLength',framedur*fs/1000, ...
            'OverlapLength',timestep*fs/1000, ...
            'Range',[f0min,f0max], ...
            'MedianFilterLength',smoothing_dur*fs/1000);
hr = harmonicRatio(s,fs,"Window",hamming(framedur*fs/1000,'periodic'),...
    "OverlapLength",timestep*fs/1000);
hr_threshold=0.4;
f0_matlab_value(hr<hr_threshold)=0;
%完整代码:mbd.pub/o/bread/mbd-ZZ6blJtu

%%%%%%%% Draw extracted f0 %%%%%%%%%%%%%%%%%%
subplot(3,1,3)
f0_matlab_time = 1000*(idx - 1)/fs;
vuv_matlab=(hr<hr_threshold);
plot(f0_matlab_time,f0_matlab_value)
hold on
plot(f0_ref_time,f0_ref_value)
xlabel('Time (s)')
ylabel('Pitch (Hz)')
legend('F0 est by Matlab','Gnd truth f0')
title('F0 contour extracted from Matlab built-in function (pitch)')
相关推荐
做怪小疯子7 分钟前
LeetCode 热题 100——矩阵——旋转图像
算法·leetcode·矩阵
努力学习的小廉8 分钟前
我爱学算法之—— BFS之最短路径问题
算法·宽度优先
python零基础入门小白23 分钟前
【万字长文】大模型应用开发:意图路由与查询重写设计模式(从入门到精通)
java·开发语言·设计模式·语言模型·架构·大模型应用开发·大模型学习
天若有情67331 分钟前
【c++】手撸C++ Promise:从零实现通用异步回调组件,支持链式调用+异常安全
开发语言·前端·javascript·c++·promise
无心水32 分钟前
【Python实战进阶】1、Python高手养成指南:四阶段突破法从入门到架构师
开发语言·python·django·matplotlib·gil·python实战进阶·python工程化实战进阶
杭州泽沃电子科技有限公司40 分钟前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
高山上有一只小老虎40 分钟前
构造A+B
java·算法
GIS数据转换器42 分钟前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
木头左43 分钟前
缺失值插补策略比较线性回归vs.相邻填充在LSTM输入层的性能差异分析
算法·线性回归·lstm
OJAC1111 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融