基于瞬时频率的语言信号清/浊音判决和高音检测(MATLAB R2021)

语音是由气流激励声道从嘴唇或鼻孔辐射出来而产生的。根据声带是否振动,发音可分为浊音和清音。浊音和清音有明显的区别,浊音具有周期信号的特征,而清音则具有随机噪声的特征;浊音在频域上具有共振峰结构,其能量主要集中在低频带,清音的振幅值相对较小,在时域和频域没有明显的规律性。清音和浊音的正确判断在语音识别、语音合成、语音编码中具有重要作用。传统的清浊音区分方法有:短时能量法、短时自相关函数法和过零点法等。由于实际语音常有连读以及单音素发音过短的情况,现有的清浊音判断方法也会出现判断不准确的情况。

程序运行环境为MATLAB R2021B,为基于瞬时频率的语言信号清/浊音判决和高音检测,部分代码如下:

Matlab 复制代码
%% Comparison with Matlab'2020 built-infunction (pitch) (Method: SRH (Drugman 2011)%%%%
[f0_matlab_value,idx] = pitch(s,fs, ...
            'Method','SRH', ...
            'WindowLength',framedur*fs/1000, ...
            'OverlapLength',timestep*fs/1000, ...
            'Range',[f0min,f0max], ...
            'MedianFilterLength',smoothing_dur*fs/1000);
hr = harmonicRatio(s,fs,"Window",hamming(framedur*fs/1000,'periodic'),...
    "OverlapLength",timestep*fs/1000);
hr_threshold=0.4;
f0_matlab_value(hr<hr_threshold)=0;
%完整代码:mbd.pub/o/bread/mbd-ZZ6blJtu

%%%%%%%% Draw extracted f0 %%%%%%%%%%%%%%%%%%
subplot(3,1,3)
f0_matlab_time = 1000*(idx - 1)/fs;
vuv_matlab=(hr<hr_threshold);
plot(f0_matlab_time,f0_matlab_value)
hold on
plot(f0_ref_time,f0_ref_value)
xlabel('Time (s)')
ylabel('Pitch (Hz)')
legend('F0 est by Matlab','Gnd truth f0')
title('F0 contour extracted from Matlab built-in function (pitch)')
相关推荐
luoqice几秒前
linux下找到指定目录下最新日期log文件
linux·算法
楽码18 分钟前
底层技术SwissTable的实现对比
数据结构·后端·算法
科大饭桶19 分钟前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
fffcccc111226 分钟前
初级背包问题,层层剖析为什么这样做。最好需要自己推演一遍。
算法
林开落L30 分钟前
库的制作与原理
linux·开发语言·动静态库·库的制作
什么都想学的阿超38 分钟前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
m0_480502641 小时前
Rust 入门 泛型和特征-特征对象 (十四)
开发语言·后端·rust
努力还债的学术吗喽1 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
明道云创始人任向晖1 小时前
20个进入实用阶段的AI应用场景(零售电商业篇)
人工智能·零售
数据智研1 小时前
【数据分享】大清河(大庆河)流域上游土地利用
人工智能