基于瞬时频率的语言信号清/浊音判决和高音检测(MATLAB R2021)

语音是由气流激励声道从嘴唇或鼻孔辐射出来而产生的。根据声带是否振动,发音可分为浊音和清音。浊音和清音有明显的区别,浊音具有周期信号的特征,而清音则具有随机噪声的特征;浊音在频域上具有共振峰结构,其能量主要集中在低频带,清音的振幅值相对较小,在时域和频域没有明显的规律性。清音和浊音的正确判断在语音识别、语音合成、语音编码中具有重要作用。传统的清浊音区分方法有:短时能量法、短时自相关函数法和过零点法等。由于实际语音常有连读以及单音素发音过短的情况,现有的清浊音判断方法也会出现判断不准确的情况。

程序运行环境为MATLAB R2021B,为基于瞬时频率的语言信号清/浊音判决和高音检测,部分代码如下:

Matlab 复制代码
%% Comparison with Matlab'2020 built-infunction (pitch) (Method: SRH (Drugman 2011)%%%%
[f0_matlab_value,idx] = pitch(s,fs, ...
            'Method','SRH', ...
            'WindowLength',framedur*fs/1000, ...
            'OverlapLength',timestep*fs/1000, ...
            'Range',[f0min,f0max], ...
            'MedianFilterLength',smoothing_dur*fs/1000);
hr = harmonicRatio(s,fs,"Window",hamming(framedur*fs/1000,'periodic'),...
    "OverlapLength",timestep*fs/1000);
hr_threshold=0.4;
f0_matlab_value(hr<hr_threshold)=0;
%完整代码:mbd.pub/o/bread/mbd-ZZ6blJtu

%%%%%%%% Draw extracted f0 %%%%%%%%%%%%%%%%%%
subplot(3,1,3)
f0_matlab_time = 1000*(idx - 1)/fs;
vuv_matlab=(hr<hr_threshold);
plot(f0_matlab_time,f0_matlab_value)
hold on
plot(f0_ref_time,f0_ref_value)
xlabel('Time (s)')
ylabel('Pitch (Hz)')
legend('F0 est by Matlab','Gnd truth f0')
title('F0 contour extracted from Matlab built-in function (pitch)')
相关推荐
爪哇部落算法小助手19 小时前
每日两题day50
数据结构·c++·算法
wuk99819 小时前
基于Matlab的彩色图像特征提取实现
人工智能·计算机视觉·matlab
come1123419 小时前
现代前端技术栈关系详解 (PHP 开发者特供版)
开发语言·前端·php
yong999019 小时前
基于互信息的Matlab多模态医学图像配准实现
开发语言·matlab
GEO_NEWS19 小时前
2025下半年GEO服务商技术革命:万数科技以AI全链路优化定义行业标杆
人工智能
说私域19 小时前
智能名片链动2+1模式S2B2C商城小程序:构建私域生态“留”量时代的新引擎
大数据·人工智能·小程序
说私域20 小时前
基于开源AI大模型与AI智能名片S2B2C商城小程序的直播简介引流策略研究——以B站直播为例
人工智能·小程序
E***q53920 小时前
JavaScript数据挖掘开发
开发语言·javascript·数据挖掘
金紫火20 小时前
AiPPT 新功能体验:从“一键生成”到更智能的演示制作
人工智能·ppt
Dev7z20 小时前
基于计算机视觉与机器学习的课堂坐姿智能监测与预警系统
人工智能·机器学习·计算机视觉