ZeRO论文阅读

一.前情提要

1.本文理论为主,并且仅为个人理解,能力一般,不喜勿喷

2.本文理论知识较为成体系

3.如有需要,以下是原文,更为完备

Zero 论文精读【论文精读】_哔哩哔哩_bilibili

二.正文

1.前言

①为什么用该技术:当模型很大,计算单元存储不下的时候,将其分散开来,需要的时候调用即可,该技术则是应用于此

②简介:ZeRO是一种用于大规模深度学习模型训练的优化技术,旨在解决在训练大型模型时遇到的内存限制和通信开销等问题(简单理解:加速transformer)

2.补充说明

①模型并行:

模型并行是一种用于训练大型神经网络的分布式计算策略,旨在将模型参数分割并分配到不同的设备上进行计算。这种方法有助于克服单个设备内存的限制,并提高训练大型模型的效率。

②通讯

GPU通信指的是在多个GPU之间进行数据传输和通信的过程。在深度学习中,通常会使用多个GPU来加速训练过程,这就需要在GPU之间有效地传输模型参数、梯度和其他相关数据。

③混合精度和半精度是深度学习中用于提高训练效率和性能的技术,通过减少模型参数和计算过程中的精度要求来降低计算成本。以下是对混合精度和半精度的解释:

  1. 半精度

半精度是一种表示数值的方法,使用16位浮点数来存储数据。

  1. 混合精度

混合精度是一种结合了不同精度的计算和存储方案。

3.ZeRO-dp优化的细节

(内存用在什么地方:①保存模型②保存梯度③保存优化器里的状态④中间值)

①核心算法是切开放在不同地方---->和参数服务器一样

②使用半精度来训练(fp16)但权重是fp32(避免一堆极小数字累加,可能仍然为0)再转化为fp16

③对于每个w状态只拷贝一份,避免重复-------->参与服务器的思想-------->内存使用下降

4.ZeRO-R优化的细节

①不同于计算来换空间,这里是带宽来换空间

②对于额外的临时缓存:设置固定大小

③对于内存碎片:不断的整理

5.具体实施(假定为两块卡,一个层)

①Pos(zero1)

②Pg(zero2)

③Pp(zero3)

使用后呈现的结果:

6.如何降低中间变量

①切分层(主要作用于模型并行)

PA:

②buffer

类比:在发送数据上,等待足够多的再发送,就像把包裹塞满卡车

③内存整理

(上述都是使用在上层)

7.在megantron上

①实验主图

②超线性性能增长

相关推荐
AI让世界更懂你44 分钟前
【ACL系列论文写作指北15-如何进行reveiw】-公平、公正、公开
人工智能·自然语言处理
**梯度已爆炸**2 小时前
自然语言处理入门
人工智能·自然语言处理
羊小猪~~4 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子4 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
静心问道4 小时前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型4 小时前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
静心问道4 小时前
SqueezeBERT:计算机视觉能为自然语言处理在高效神经网络方面带来哪些启示?
人工智能·计算机视觉·自然语言处理
Sherlock Ma4 小时前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态
weisian1514 小时前
人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
人工智能·语言模型·自然语言处理
xiangduanjava6 小时前
关于安装Ollama大语言模型本地部署工具
人工智能·语言模型·自然语言处理