李沐47_转置卷积

转置卷积

1.卷积不会增大输入的高宽,要么不变,要么减半

2.转置卷积可以用来增大输入高宽

3.用id卷积卷,增大卷积核的数量可以达到增大特征图的目的

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

输入矩阵X和卷积核矩阵K实现基本的转置卷积运算trans_conv。

python 复制代码
def trans_conv(X, K):
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y

构建输入张量X和卷积核张量K从而验证上述实现输出。 此实现是基本的二维转置卷积运算。

python 复制代码
X = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
trans_conv(X, K)
复制代码
tensor([[ 0.,  0.,  1.],
        [ 0.,  4.,  6.],
        [ 4., 12.,  9.]])

当输入X和卷积核K都是四维张量时,我们可以使用高级API获得相同的结果。

python 复制代码
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
tconv(X)
复制代码
tensor([[[[ 0.,  0.,  1.],
          [ 0.,  4.,  6.],
          [ 4., 12.,  9.]]]], grad_fn=<ConvolutionBackward0>)

填充、步幅和多通道

与常规卷积不同,在转置卷积中,填充被应用于的输出(常规卷积将填充应用于输入)。

python 复制代码
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
tconv(X)
复制代码
tensor([[[[4.]]]], grad_fn=<ConvolutionBackward0>)

验证步幅为2的转置卷积的输出。

python 复制代码
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
tconv(X)
复制代码
tensor([[[[0., 0., 0., 1.],
          [0., 0., 2., 3.],
          [0., 2., 0., 3.],
          [4., 6., 6., 9.]]]], grad_fn=<ConvolutionBackward0>)
python 复制代码
X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
tconv(conv(X)).shape == X.shape
复制代码
True

定义了一个3X3的输入X和2X2卷积核K,然后使用corr2d函数计算卷积输出Y。

python 复制代码
X = torch.arange(9.0).reshape(3, 3)
K = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
Y = d2l.corr2d(X, K)
Y
复制代码
tensor([[27., 37.],
        [57., 67.]])

将卷积核K重写为包含大量0的稀疏权重矩阵W。 权重矩阵的形状是(4,9),其中非0元素来自卷积核K。

python 复制代码
def kernel2matrix(K):
    k, W = torch.zeros(5), torch.zeros((4, 9))
    k[:2], k[3:5] = K[0, :], K[1, :]
    W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
    return W

W = kernel2matrix(K)
W
复制代码
tensor([[1., 2., 0., 3., 4., 0., 0., 0., 0.],
        [0., 1., 2., 0., 3., 4., 0., 0., 0.],
        [0., 0., 0., 1., 2., 0., 3., 4., 0.],
        [0., 0., 0., 0., 1., 2., 0., 3., 4.]])

逐行连结输入X,获得了一个长度为9的矢量。 然后,W的矩阵乘法和向量化的X给出了一个长度为4的向量。 重塑它之后,可以获得与上面的原始卷积操作所得相同的结果Y:我们刚刚使用矩阵乘法实现了卷积。

python 复制代码
Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2)
复制代码
tensor([[True, True],
        [True, True]])

将上面的常规卷积2X2的输出Y作为转置卷积的输入。 想要通过矩阵相乘来实现它,我们只需要将权重矩阵W的形状转置为(9,4)。

python 复制代码
Z = trans_conv(Y, K)
Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3)
复制代码
tensor([[True, True, True],
        [True, True, True],
        [True, True, True]])
相关推荐
聆风吟º1 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路1 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
聆风吟º4 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子4 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder4 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能5775 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
猫头虎5 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
h64648564h5 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切5 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann