李沐47_转置卷积

转置卷积

1.卷积不会增大输入的高宽,要么不变,要么减半

2.转置卷积可以用来增大输入高宽

3.用id卷积卷,增大卷积核的数量可以达到增大特征图的目的

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

输入矩阵X和卷积核矩阵K实现基本的转置卷积运算trans_conv。

python 复制代码
def trans_conv(X, K):
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y

构建输入张量X和卷积核张量K从而验证上述实现输出。 此实现是基本的二维转置卷积运算。

python 复制代码
X = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
trans_conv(X, K)
复制代码
tensor([[ 0.,  0.,  1.],
        [ 0.,  4.,  6.],
        [ 4., 12.,  9.]])

当输入X和卷积核K都是四维张量时,我们可以使用高级API获得相同的结果。

python 复制代码
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
tconv(X)
复制代码
tensor([[[[ 0.,  0.,  1.],
          [ 0.,  4.,  6.],
          [ 4., 12.,  9.]]]], grad_fn=<ConvolutionBackward0>)

填充、步幅和多通道

与常规卷积不同,在转置卷积中,填充被应用于的输出(常规卷积将填充应用于输入)。

python 复制代码
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
tconv(X)
复制代码
tensor([[[[4.]]]], grad_fn=<ConvolutionBackward0>)

验证步幅为2的转置卷积的输出。

python 复制代码
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
tconv(X)
复制代码
tensor([[[[0., 0., 0., 1.],
          [0., 0., 2., 3.],
          [0., 2., 0., 3.],
          [4., 6., 6., 9.]]]], grad_fn=<ConvolutionBackward0>)
python 复制代码
X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
tconv(conv(X)).shape == X.shape
复制代码
True

定义了一个3X3的输入X和2X2卷积核K,然后使用corr2d函数计算卷积输出Y。

python 复制代码
X = torch.arange(9.0).reshape(3, 3)
K = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
Y = d2l.corr2d(X, K)
Y
复制代码
tensor([[27., 37.],
        [57., 67.]])

将卷积核K重写为包含大量0的稀疏权重矩阵W。 权重矩阵的形状是(4,9),其中非0元素来自卷积核K。

python 复制代码
def kernel2matrix(K):
    k, W = torch.zeros(5), torch.zeros((4, 9))
    k[:2], k[3:5] = K[0, :], K[1, :]
    W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
    return W

W = kernel2matrix(K)
W
复制代码
tensor([[1., 2., 0., 3., 4., 0., 0., 0., 0.],
        [0., 1., 2., 0., 3., 4., 0., 0., 0.],
        [0., 0., 0., 1., 2., 0., 3., 4., 0.],
        [0., 0., 0., 0., 1., 2., 0., 3., 4.]])

逐行连结输入X,获得了一个长度为9的矢量。 然后,W的矩阵乘法和向量化的X给出了一个长度为4的向量。 重塑它之后,可以获得与上面的原始卷积操作所得相同的结果Y:我们刚刚使用矩阵乘法实现了卷积。

python 复制代码
Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2)
复制代码
tensor([[True, True],
        [True, True]])

将上面的常规卷积2X2的输出Y作为转置卷积的输入。 想要通过矩阵相乘来实现它,我们只需要将权重矩阵W的形状转置为(9,4)。

python 复制代码
Z = trans_conv(Y, K)
Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3)
复制代码
tensor([[True, True, True],
        [True, True, True],
        [True, True, True]])
相关推荐
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
华研前沿标杆游学2 小时前
2026年走进洛阳格力工厂参观游学
python
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~2 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
AI小怪兽3 小时前
基于YOLOv13的汽车零件分割系统(Python源码+数据集+Pyside6界面)
开发语言·python·yolo·无人机
齐齐大魔王3 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
wszy18093 小时前
新文章标签:让用户一眼发现最新内容
java·python·harmonyos