代码随想录算法训练营DAY36|C++贪心算法Part.5|435.无重叠区间、763.划分字母区间、56. 合并区间

文章目录

435.无重叠区间

力扣题目链接

文章链接:435.无重叠区间

视频链接:贪心算法,依然是判断重叠区间 | LeetCode:435.无重叠区间

状态:排序顺序很重要!决定了我们如何处理后续逻辑。对于按右边界排序,我们只要抓住分割线即可,每次更新分割线,说明就有非交叉区间;

想都不用想,本题首先要求的肯定就是进行排序,让为了让我们后续更好进行操作。

并且可以很直观得推导出我们的贪心策略:

局部最优------当前区间与相邻两个区间是否重叠,这里是非常有技巧的,具体可以看下面的思路

全局最优------找出所有的重叠区间

按右边界排序

我们先按右边界进行排序,然后从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。

记录非交叉区间的个数也是很需要技巧的:

总之一句话,最重要的点就在于找到区间的分割线 ,每次遇到分割线,我们就记录一次非交叉区间个数。比如上文中,更新了两次分割线,所以非交叉区间是3。所以在代码表现上,也是比较直观的。

基于以上代码的一个重要前提就是:区间是按照右边界来排序的

CPP代码

cpp] 复制代码
class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1];
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 1; // 记录非交叉区间的个数
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {
            if (end <= intervals[i][0]) {	//与每个区间的左边界比较
                end = intervals[i][1];		//更新分割线
                count++;
            }
        }
        return intervals.size() - count;
    }
};

按左边界排序

对于左边界排序,这里拿 intervals = [[1,100],[11,22],[1,11],[2,12]]举例,

排序后:intervals = [[1,100],[1,11],[2,12],[11,22]]。如果我们按照右边界排序的处理还能行吗。简单推导一下,这样会导致我们的最终结果是3!因为end永远都无法更新,程序认为只有一条分割线,也就是count = 1

那么如果按照左边界来排序应该怎么写呢?

如何判断相邻区间是否重叠

如果当前区间的左边界[1, 11]大于等于上一个区间的右边界[1, 100]。说明相邻区间不重叠,如果不满足该情况,那肯定说明区间重叠。

这里的count表示的是重叠区间的个数。
end在此处仍然表示的是区间分割点。

cpp 复制代码
if (intervals[i-1][0] >= intervals[i][1]) end = intervals[i][1];
else {
   count++; //记录我们重叠了多少个区间
}

如何判断一下一个区间与当前相邻区间是否重叠

要首先计算出之前我们判断的相邻区间的最小边界(左边界的最小值),和我们下一个区间的左边界是否重叠。

cpp 复制代码
else {
  count++;
  end = min(end, intervals[i][1])
}

这里num[i][1]=min(nums[i-1][1], nums[i][1]),等到i遍历到下一个区间,应该和之前两个相邻区间的最小右边界比较,如果当前i区间的左边界要大的话,那么说明不是重叠区间。

总结

左边界的思想一句话就是:如果发现了重叠区间,我们就进行更新新的分割点,并且count++

CPP代码

cpp 复制代码
class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {   
            if (intervals[i][0] >= end)  end = intervals[i][1]; // 无重叠的情况
            else { // 重叠情况 
                end = min(end, intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

# 精简版
class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] < intervals[i - 1][1]) { //重叠情况
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

763.划分字母区间

力扣题目链接

文章链接:763.划分字母区间

视频链接:贪心算法,寻找最远的出现位置! LeetCode:763.划分字母区间

状态:

本题其实就是一句话"面多了加水,水多了加面,直到刚刚好"。

这里完全不是贪心的思路,就是全局的一个模拟,主要它也属于重叠区间的问题。

思路

思路上还是很难想到的。

我们在遍历过程中,相当于找到每一个字母出现的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了

所以分为如下两步:

  • 统计每个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

我们需要记录每个字符出现的最后位置,如图:

伪代码实现

  • 统计每一个字符最后出现的位置
cpp 复制代码
int hash[27] = {0}; //i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); ++i) {
  hash[S[i] - 'a'] = i;
}
  • 定义变量
cpp 复制代码
vector<int> result;
int left = 0;
int right = 0;
  • 字符出现的最远边界的更新和结果存储
cpp 复制代码
for (int i = 0; i < S.size(); i++) {
    right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
    if (i == right) {
        result.push_back(right - left + 1);
        left = i + 1;
    }
}

CPP代码

cpp 复制代码
class Solution {
public:
    vector<int> partitionLabels(string S) {
        int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
        for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
            hash[S[i] - 'a'] = i;
        }
        vector<int> result;
        int left = 0;
        int right = 0;
        for (int i = 0; i < S.size(); i++) {
            right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
            if (i == right) {
                result.push_back(right - left + 1);
                left = i + 1;
            }
        }
        return result;
    }
};

56. 合并区间

力扣题目链接

文章链接:56. 合并区间

视频链接:贪心算法,合并区间有细节!LeetCode:56.合并区间

状态:

思路

本题同样也是重叠区间的问题。

区别在于判断区间重叠后的逻辑,本题是将重叠区间进行合并。

先排序,如果intervals[i][0] <= intervals[i - 1][1]就有重叠,所以进行合并

合并的逻辑也比较简单,

用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组

CPP代码

cpp 复制代码
class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result; // 区间集合为空直接返回
        // 排序的参数使用了lambda表达式
        sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});

        // 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
        result.push_back(intervals[0]); 

        for (int i = 1; i < intervals.size(); i++) {
            if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
                // 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
                result.back()[1] = max(result.back()[1], intervals[i][1]); 
            } else {
                result.push_back(intervals[i]); // 区间不重叠 
            }
        }
        return result;
    }
};
相关推荐
感哥39 分钟前
C++ std::string
c++
感哥17 小时前
C++ 面向对象
c++
CoovallyAIHub19 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
沐怡旸19 小时前
【底层机制】std::shared_ptr解决的痛点?是什么?如何实现?如何正确用?
c++·面试
NAGNIP19 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo20 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo20 小时前
300:最长递增子序列
算法
CoovallyAIHub1 天前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
感哥1 天前
C++ STL 常用算法
c++
CoovallyAIHub1 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉