LeetCode第53题:最大子数组和【python 5种算法】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例

题目描述

给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

输入格式
  • nums:一个整数数组。
输出格式
  • 返回整数,表示最大子数组的和。

示例

示例 1
复制代码
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
示例 2
复制代码
输入: nums = [1]
输出: 1

方法一:动态规划

解题步骤
  1. 定义状态dp[i] 表示以 nums[i] 结尾的最大子数组和。
  2. 状态转移dp[i] = max(nums[i], dp[i-1] + nums[i]),意味着当前元素单独成数组或加入前面的数组。
  3. 初始化dp[0] = nums[0],只有一个元素时最大和即为该元素。
  4. 遍历数组 :根据状态转移方程更新 dp 数组。
  5. 得到结果 :返回 dp 数组中的最大值,即为所求。
完整的规范代码
python 复制代码
def maxSubArray(nums):
    """
    动态规划解法求最大子数组和
    :param nums: List[int], 输入的整数数组
    :return: int, 最大子数组的和
    """
    if not nums:
        return 0
    
    n = len(nums)
    dp = nums[0]
    max_sum = dp
    for i in range(1, n):
        dp = max(nums[i], dp + nums[i])
        if dp > max_sum:
            max_sum = dp
    return max_sum

# 示例调用
print(maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))  # 输出: 6
算法分析
  • 时间复杂度 :(O(n)),其中 n 是数组 nums 的长度,我们只需要遍历一次数组。
  • 空间复杂度 :(O(1)),使用了常数空间存储 dp 状态和结果。

方法二:分治法

解题步骤
  1. 分治思想:将数组分成左右两部分,分别求左右部分的最大子数组和,以及跨越中点的最大子数组和。
  2. 递归求解:递归地对左右两部分数组应用分治法,直到数组长度为1。
  3. 合并结果:最大子数组和可能在左侧、右侧或跨越中心,取这三者的最大值。
完整的规范代码
python 复制代码
def maxSubArray(nums):
    """
    分治法解决最大子数组和问题
    :param nums: List[int], 输入的整数数组
    :return: int, 最大子数组的和
    """
    def maxSubArrayDivideAndConquer(l, r):
        if l == r:
            return nums[l]
        mid = (l + r) // 2
        left_max = maxSubArrayDivideAndConquer(l, mid)
        right_max = maxSubArrayDivideAndConquer(mid + 1, r)
        
        max_left_border_sum = nums[mid]
        max_right_border_sum = nums[mid + 1]
        tmp = 0
        for i in range(mid, l - 1, -1):
            tmp += nums[i]
            if tmp > max_left_border_sum:
                max_left_border_sum = tmp
        
        tmp = 0
        for i in range(mid + 1, r + 1):
            tmp += nums[i]
            if tmp > max_right_border_sum:
                max_right_border_sum = tmp
        
        return max(left_max, right_max, max_left_border_sum + max_right_border_sum)
    
    return maxSubArrayDivideAndConquer(0, len(nums) - 1)

# 示例调用
print(maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))  # 输出: 6
算法分析
  • 时间复杂度:(O(n \log n)),递归的每层需要 (O(n)) 的时间合并结果,共有 (\log n) 层。
  • 空间复杂度:(O(\log n)),递归栈的深度。

方法三:贪心算法

解题步骤
  1. 初始化变量 :设置两个变量,current_sum 表示当前遍历到的子数组的和,max_sum 用来存储遍历过程中遇到的最大子数组和。
  2. 遍历数组 :对数组中的每个元素进行遍历,根据贪心策略更新 current_summax_sum
  3. 更新当前和 :如果 current_sum 小于0,就重新设置 current_sum 为当前元素,否则就累加当前元素。
  4. 更新最大和 :每步都取 current_summax_sum 的较大值更新 max_sum
完整的规范代码
python 复制代码
def maxSubArray(nums):
    """
    使用贪心算法计算最大子数组和
    :param nums: List[int], 输入的整数数组
    :return: int, 最大子数组的和
    """
    current_sum = max_sum = nums[0]
    for num in nums[1:]:
        current_sum = max(num, current_sum + num)
        max_sum = max(max_sum, current_sum)
    return max_sum

# 示例调用
print(maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))  # 输出: 6
算法分析
  • 时间复杂度 :(O(n)),其中 n 是数组 nums 的长度,因为我们只需遍历一次数组。
  • 空间复杂度:(O(1)),使用了常数额外空间。

方法四:改进的动态规划(空间优化)

解题步骤
  1. 初始化变量 :与标准动态规划方法相似,但只用一个变量来存储上一个状态的 dp 值,从而减少空间使用。
  2. 遍历更新 :遍历数组,根据 dp[i-1] 更新 dp[i]
  3. 记录最大和:在遍历过程中持续更新最大子数组和。
完整的规范代码
python 复制代码
def maxSubArray(nums):
    """
    使用改进的动态规划算法(空间优化版本)求最大子数组和
    :param nums: List[int], 输入的整数数组
    :return: int, 最大子数组的和
    """
    n = len(nums)
    current = max_sum = nums[0]
    for i in range(1, n):
        current = max(nums[i], current + nums[i])
        max_sum = max(max_sum, current)
    return max_sum

# 示例调用
print(maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))  # 输出: 6
算法分析
  • 时间复杂度:(O(n)),只需遍历数组一次。
  • 空间复杂度:(O(1)),不使用额外的空间除了几个必要变量。

方法五:分块累计法

解题步骤
  1. 分块累计:采用分块的方式累计子数组和,每当累计和小于0时重新开始计算。
  2. 遍历数组:在遍历过程中,对每个分块的和进行计算,并更新全局最大和。
完整的规范代码
python 复制代码
def maxSubArray(nums):
    """
    使用分块累计法求最大子数组和
    :param nums: List[int], 输入的整数数组
    :return: int, 最大子数组的和
    """
    max_sum = nums[0]
    current_sum = 0
    for num in nums:
        current_sum += num
        if current_sum > max_sum:
            max_sum = current_sum
        if current_sum < 0:
            current_sum = 0
    return max_sum

# 示例调用
print(maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))  # 输出: 6
算法分析
  • 时间复杂度:(O(n)),遍历一次数组。
  • 空间复杂度:(O(1)),仅使用固定空间。

不同算法的优劣势对比

特征 方法一: 动态规划 方法二: 贪心算法 方法三: 分治法 方法四: 改进动态规划 方法五: 分块累计法
时间复杂度 (O(n)) (O(n)) (O(n log n)) (O(n)) (O(n))
空间复杂度 (O(1)) (O(1)) (O(log n)) (O(1)) (O(1))
优势 - 基本且直观 - 实现简单 - 适合并行处理 - 空间高效 - 直观易懂
劣势 - 无显著劣势 - 需要理解逻辑 - 较慢 - 与方法一类似 - 与贪心相似

应用示例

金融分析

在金螌数据分析中,最大子数组和可以用来确定股票的最优买卖时期,即找出股价变动中的最大盈利窗口。

信号处理

在处理信号时,寻找最大子数组和可以用来检测一段时间内的最大信号强度,有助于从噪声中提取有用信号。

相关推荐
人工智能训练14 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming16814 小时前
python性能优化方案研究
python·性能优化
码云数智-大飞15 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
biuyyyxxx16 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
极客数模17 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
L_090717 小时前
【C++】高阶数据结构 -- 红黑树
数据结构·c++
A_nanda18 小时前
c# MOdbus rto读写串口,如何不相互影响
算法·c#·多线程
小鸡吃米…18 小时前
机器学习中的代价函数
人工智能·python·机器学习
Li emily19 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
代码雕刻家19 小时前
2.4.蓝桥杯-分巧克力
算法·蓝桥杯