pytorch对音频数据的读取和保存

torchaudio是PyTorch深度学习框架的一部分,主要用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在PyTorch中进行音频相关的机器学习和深度学习任务变得更加便捷。

通过使用torchaudio,开发者能够轻松地将音频数据转换为适合深度学习模型输入的形式,并利用PyTorch的高效张量运算和自动梯度功能进行训练和推理。此外,torchaudio还支持多声道音频处理和GPU加速,以满足不同应用场景的需求。

torchaudio.load读取音频文件:

python 复制代码
import torchaudio
file_path = "xx/xx.wav"
waveform, sr = torchaudio.load(file_path, normalize=True)

主要说明:

可以读取float32, int16, int32类型数据,返回的是torch.tensor类型的数据;

normalize=True时,返回的数据是归一化到(-1,1)的float32数据;

normalize=False时,返回的是float32、int16或者int32数据,具体需要看file_path本身是什么类型的音频数据;

normalize默认值为True。

torchaudio.save保存音频文件

python 复制代码
# out_path, 保存的音频文件路径,waveform保存的数据,sr是采样率
torchaudio.save(out_path, waveform, sr)

根据waveform的格式自动保存为float32、int16或者int32

相关推荐
漫长的~以后11 分钟前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛1117 分钟前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai
LCG米19 分钟前
嵌入式Python工业环境监测实战:MicroPython读取多传感器数据
开发语言·人工智能·python
努力的BigJiang40 分钟前
Cube-slam复现及报错解决
人工智能
ComputerInBook1 小时前
代数基本概念理解——特征向量和特征值
人工智能·算法·机器学习·线性变换·特征值·特征向量
漫长的~以后1 小时前
Edge TPU LiteRT V2拆解:1GB内存设备也能流畅跑AI的底层逻辑
前端·人工智能·edge
星火10241 小时前
“重生”之我用 Solo 写了一盘中国象棋
人工智能·ai编程
祝余Eleanor1 小时前
Day37 模型可视化与推理
人工智能·python·深度学习
是Dream呀1 小时前
【openFuyao】openFuyao社区AI推理加速组件技术解析与实践
人工智能·架构·openfuyao
独自归家的兔1 小时前
千问通义plus - 代码解释器的使用
java·人工智能