pytorch对音频数据的读取和保存

torchaudio是PyTorch深度学习框架的一部分,主要用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在PyTorch中进行音频相关的机器学习和深度学习任务变得更加便捷。

通过使用torchaudio,开发者能够轻松地将音频数据转换为适合深度学习模型输入的形式,并利用PyTorch的高效张量运算和自动梯度功能进行训练和推理。此外,torchaudio还支持多声道音频处理和GPU加速,以满足不同应用场景的需求。

torchaudio.load读取音频文件:

python 复制代码
import torchaudio
file_path = "xx/xx.wav"
waveform, sr = torchaudio.load(file_path, normalize=True)

主要说明:

可以读取float32, int16, int32类型数据,返回的是torch.tensor类型的数据;

normalize=True时,返回的数据是归一化到(-1,1)的float32数据;

normalize=False时,返回的是float32、int16或者int32数据,具体需要看file_path本身是什么类型的音频数据;

normalize默认值为True。

torchaudio.save保存音频文件

python 复制代码
# out_path, 保存的音频文件路径,waveform保存的数据,sr是采样率
torchaudio.save(out_path, waveform, sr)

根据waveform的格式自动保存为float32、int16或者int32

相关推荐
Dream251236 分钟前
【模型常见评价指标(分类)】
人工智能
中意灬5 小时前
基于CNN+ViT的蔬果图像分类实验
人工智能·分类·cnn
chxin140165 小时前
PyTorch - Tensor 学习笔记
pytorch·笔记
唐天下文化6 小时前
甜心速达智慧潮流精选超市、即时零售新业态,打造可持续发展商业模式
大数据·人工智能·零售
有杨既安然6 小时前
Python自动化办公
开发语言·人工智能·深度学习·机器学习
何似在人间5757 小时前
SpringAI+DeepSeek大模型应用开发——1 AI概述
java·人工智能·spring·springai
科技小E7 小时前
5G时代,视频分析设备平台EasyCVR实现通信基站远程安全便捷管控
大数据·网络·人工智能·音视频·安防监控
keepython7 小时前
【n8n docker 部署的代理问题】解决n8n部署无法访问openai等外国大模型厂商的api
运维·人工智能·docker·容器
訾博ZiBo7 小时前
AI日报 - 2025年4月18日
人工智能
胡萝卜不甜7 小时前
智能语音识别+1.2用SAPI实现文本转语音(100%教会)
人工智能·语音识别