pytorch对音频数据的读取和保存

torchaudio是PyTorch深度学习框架的一部分,主要用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在PyTorch中进行音频相关的机器学习和深度学习任务变得更加便捷。

通过使用torchaudio,开发者能够轻松地将音频数据转换为适合深度学习模型输入的形式,并利用PyTorch的高效张量运算和自动梯度功能进行训练和推理。此外,torchaudio还支持多声道音频处理和GPU加速,以满足不同应用场景的需求。

torchaudio.load读取音频文件:

python 复制代码
import torchaudio
file_path = "xx/xx.wav"
waveform, sr = torchaudio.load(file_path, normalize=True)

主要说明:

可以读取float32, int16, int32类型数据,返回的是torch.tensor类型的数据;

normalize=True时,返回的数据是归一化到(-1,1)的float32数据;

normalize=False时,返回的是float32、int16或者int32数据,具体需要看file_path本身是什么类型的音频数据;

normalize默认值为True。

torchaudio.save保存音频文件

python 复制代码
# out_path, 保存的音频文件路径,waveform保存的数据,sr是采样率
torchaudio.save(out_path, waveform, sr)

根据waveform的格式自动保存为float32、int16或者int32

相关推荐
西西o13 分钟前
MindSpeed MM多模态模型微调实战指南
人工智能
也许是_19 分钟前
大模型应用技术之 详解 MCP 原理
人工智能·python
Codebee27 分钟前
#专访Ooder架构作者|A2UI时代全栈架构的四大核心之问,深度解析设计取舍
人工智能
亚马逊云开发者37 分钟前
如何在亚马逊云科技部署高可用MaxKB知识库应用
人工智能
TEL189246224771 小时前
IT66612:1对2 HDMI主动分配器,配备EDID RAM和嵌入式MCU
音视频·实时音视频·视频编解码
亚里随笔1 小时前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
牛客企业服务1 小时前
AI面试实用性解析:不是“能不能用”,而是“怎么用好”
人工智能·面试·职场和发展
MicroTech20252 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法
救救孩子把2 小时前
50-机器学习与大模型开发数学教程-4-12 Bootstrap方法
人工智能·机器学习·bootstrap
趣知岛2 小时前
AI是否能代替从业者
人工智能