pytorch对音频数据的读取和保存

torchaudio是PyTorch深度学习框架的一部分,主要用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在PyTorch中进行音频相关的机器学习和深度学习任务变得更加便捷。

通过使用torchaudio,开发者能够轻松地将音频数据转换为适合深度学习模型输入的形式,并利用PyTorch的高效张量运算和自动梯度功能进行训练和推理。此外,torchaudio还支持多声道音频处理和GPU加速,以满足不同应用场景的需求。

torchaudio.load读取音频文件:

python 复制代码
import torchaudio
file_path = "xx/xx.wav"
waveform, sr = torchaudio.load(file_path, normalize=True)

主要说明:

可以读取float32, int16, int32类型数据,返回的是torch.tensor类型的数据;

normalize=True时,返回的数据是归一化到(-1,1)的float32数据;

normalize=False时,返回的是float32、int16或者int32数据,具体需要看file_path本身是什么类型的音频数据;

normalize默认值为True。

torchaudio.save保存音频文件

python 复制代码
# out_path, 保存的音频文件路径,waveform保存的数据,sr是采样率
torchaudio.save(out_path, waveform, sr)

根据waveform的格式自动保存为float32、int16或者int32

相关推荐
A先生的AI之旅3 分钟前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits3 分钟前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
丝瓜蛋汤3 分钟前
微调生成特定写作风格助手
人工智能·python
OpenMiniServer18 分钟前
电气化能源革命下的社会
java·人工智能·能源
猿小羽23 分钟前
探索 Codex:AI 编程助手的未来潜力
人工智能·openai·代码生成·codex·ai编程助手
菜青虫嘟嘟28 分钟前
Expert Iteration:一种无需人工标注即可显著提升大语言模型推理能力的简单方法核心
人工智能·语言模型·自然语言处理
玄同76533 分钟前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战
人工智能·langchain·知识图谱·embedding·知识库·向量数据库·rag
deepdata_cn40 分钟前
为什么AI需要因果?
人工智能·因果学习
说私域1 小时前
社群招募文案的核心构建要点与工具赋能路径——基于AI智能名片链动2+1模式商城小程序的实践研究
人工智能·小程序·私域运营
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营