pytorch对音频数据的读取和保存

torchaudio是PyTorch深度学习框架的一部分,主要用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在PyTorch中进行音频相关的机器学习和深度学习任务变得更加便捷。

通过使用torchaudio,开发者能够轻松地将音频数据转换为适合深度学习模型输入的形式,并利用PyTorch的高效张量运算和自动梯度功能进行训练和推理。此外,torchaudio还支持多声道音频处理和GPU加速,以满足不同应用场景的需求。

torchaudio.load读取音频文件:

python 复制代码
import torchaudio
file_path = "xx/xx.wav"
waveform, sr = torchaudio.load(file_path, normalize=True)

主要说明:

可以读取float32, int16, int32类型数据,返回的是torch.tensor类型的数据;

normalize=True时,返回的数据是归一化到(-1,1)的float32数据;

normalize=False时,返回的是float32、int16或者int32数据,具体需要看file_path本身是什么类型的音频数据;

normalize默认值为True。

torchaudio.save保存音频文件

python 复制代码
# out_path, 保存的音频文件路径,waveform保存的数据,sr是采样率
torchaudio.save(out_path, waveform, sr)

根据waveform的格式自动保存为float32、int16或者int32

相关推荐
大千AI助手6 分钟前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
新知图书27 分钟前
大模型微调定义与分类
人工智能·大模型应用开发·大模型应用
山烛31 分钟前
一文读懂YOLOv4:目标检测领域的技术融合与性能突破
人工智能·yolo·目标检测·计算机视觉·yolov4
大千AI助手32 分钟前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码
钱彬 (Qian Bin)1 小时前
项目实践4—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi
钱彬 (Qian Bin)1 小时前
项目实践3—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi
Microsoft Word1 小时前
向量数据库与RAG
数据库·人工智能·向量数据库·rag
victory04311 小时前
在音频领域采用mamba模型可行性分析
音视频
Black蜡笔小新2 小时前
视频汇聚平台EasyCVR级联播放偶发失败排查:TCP主动模式下的3秒超时响应差
网络·tcp/ip·音视频
2401_836900332 小时前
YOLOv5:目标检测的实用派王者
人工智能·计算机视觉·目标跟踪·yolov5