Pytorch学习笔记——神经网络基本框架

一、神经网络是什么

神经网络在人工智能和深度学习的领域,一般称为人工神经网络,即ANN(Artificial Neural Network),是一种模仿人脑神经系统工作方式的计算模型。被广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。

二、如何搭建一个属于自己的神经网络

搭建一个神经网络,需要借用torch中的nn模块,也就是Neural Network(神经网络)模块

还是要遵循以下的步骤:导包------构造神经网络骨架(模型)------定义实体类(调用辅助类或函数)------调用输入数据进行训练------得出训练结果

1、导包

python 复制代码
import torch
from torch import nn

2、搭建神经网络模型

python 复制代码
class W(nn.Module):

    def __init__(self):
        super(W,self).__init__() 

    def forward(self,input):
        output = input + 1
        return output

这个自定义的W神经网络训练模型继承于nn的Module模块。Module模块用于搭建最基本的神经网络骨架,它是所有神经网络模块的基类。

里面需要重写两个函数,一个是构造函数init,一个是前向函数forward(区别于backword反向传播,后面会学习到),super()的作用是调用父类构造函数确保子函数正常运行,在forward中可以写相关的训练操作

可以参考Pytorch的官方文档,里面有对Module的详细介绍

Module --- PyTorch 2.3 documentationhttps://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

3、利用模型训练

创建神经网络模型实例对象,利用数据进行训练,得出训练结果并输出

注意:输入的类型为tensor张量

python 复制代码
w = W()
x = torch.tensor(1.0)

输出的训练结果为tensor张量

bash 复制代码
tensor(2.)

三、完整代码展示

python 复制代码
# -*- coding: utf-8 -*-
# @Author: hxm
import torch
from torch import nn

class W(nn.Module):

    def __init__(self):
        super(W, self).__init__()

    def forward(self,input):
        output = input + 1
        return output

w = W()
x = torch.tensor(1.0)
output = w(x)
print(output)
相关推荐
喜欢吃燃面8 分钟前
C++算法竞赛:位运算
开发语言·c++·学习·算法
传奇开心果编程9 分钟前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
草莓熊Lotso11 分钟前
《详解 C++ Date 类的设计与实现:从运算符重载到功能测试》
开发语言·c++·经验分享·笔记·其他
_Kayo_6 小时前
node.js 学习笔记3 HTTP
笔记·学习
CCCC13101639 小时前
嵌入式学习(day 28)线程
jvm·学习
星星火柴93610 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
小狗爱吃黄桃罐头10 小时前
正点原子【第四期】Linux之驱动开发篇学习笔记-1.1 Linux驱动开发与裸机开发的区别
linux·驱动开发·学习
艾莉丝努力练剑11 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
武昌库里写JAVA12 小时前
JAVA面试汇总(四)JVM(一)
java·vue.js·spring boot·sql·学习
Cx330❀12 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法