Pytorch学习笔记——神经网络基本框架

一、神经网络是什么

神经网络在人工智能和深度学习的领域,一般称为人工神经网络,即ANN(Artificial Neural Network),是一种模仿人脑神经系统工作方式的计算模型。被广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。

二、如何搭建一个属于自己的神经网络

搭建一个神经网络,需要借用torch中的nn模块,也就是Neural Network(神经网络)模块

还是要遵循以下的步骤:导包------构造神经网络骨架(模型)------定义实体类(调用辅助类或函数)------调用输入数据进行训练------得出训练结果

1、导包

python 复制代码
import torch
from torch import nn

2、搭建神经网络模型

python 复制代码
class W(nn.Module):

    def __init__(self):
        super(W,self).__init__() 

    def forward(self,input):
        output = input + 1
        return output

这个自定义的W神经网络训练模型继承于nn的Module模块。Module模块用于搭建最基本的神经网络骨架,它是所有神经网络模块的基类。

里面需要重写两个函数,一个是构造函数init,一个是前向函数forward(区别于backword反向传播,后面会学习到),super()的作用是调用父类构造函数确保子函数正常运行,在forward中可以写相关的训练操作

可以参考Pytorch的官方文档,里面有对Module的详细介绍

Module --- PyTorch 2.3 documentationhttps://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

3、利用模型训练

创建神经网络模型实例对象,利用数据进行训练,得出训练结果并输出

注意:输入的类型为tensor张量

python 复制代码
w = W()
x = torch.tensor(1.0)

输出的训练结果为tensor张量

bash 复制代码
tensor(2.)

三、完整代码展示

python 复制代码
# -*- coding: utf-8 -*-
# @Author: hxm
import torch
from torch import nn

class W(nn.Module):

    def __init__(self):
        super(W, self).__init__()

    def forward(self,input):
        output = input + 1
        return output

w = W()
x = torch.tensor(1.0)
output = w(x)
print(output)
相关推荐
Katzelala1 小时前
[K8S学习笔记] Service和Ingress的关系
笔记·学习·kubernetes
有谁看见我的剑了?1 小时前
k8s-init容器学习
学习·容器·kubernetes
HAH-HAH2 小时前
【Python 入门】(2)Python 语言基础(变量)
开发语言·python·学习·青少年编程·个人开发·变量·python 语法
递归不收敛3 小时前
PyCharm项目上传GitHub仓库(笔记)
笔记·pycharm·github
技术小黑3 小时前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
递归不收敛3 小时前
一、Java 基础入门:从 0 到 1 认识 Java(详细笔记)
java·开发语言·笔记
xian_wwq4 小时前
【学习笔记】Https证书如何升级到国密
笔记·学习·证书
DogDaoDao4 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
一又四分之一.5 小时前
hexo文章
笔记
西猫雷婶5 小时前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习