Pytorch学习笔记——神经网络基本框架

一、神经网络是什么

神经网络在人工智能和深度学习的领域,一般称为人工神经网络,即ANN(Artificial Neural Network),是一种模仿人脑神经系统工作方式的计算模型。被广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。

二、如何搭建一个属于自己的神经网络

搭建一个神经网络,需要借用torch中的nn模块,也就是Neural Network(神经网络)模块

还是要遵循以下的步骤:导包------构造神经网络骨架(模型)------定义实体类(调用辅助类或函数)------调用输入数据进行训练------得出训练结果

1、导包

python 复制代码
import torch
from torch import nn

2、搭建神经网络模型

python 复制代码
class W(nn.Module):

    def __init__(self):
        super(W,self).__init__() 

    def forward(self,input):
        output = input + 1
        return output

这个自定义的W神经网络训练模型继承于nn的Module模块。Module模块用于搭建最基本的神经网络骨架,它是所有神经网络模块的基类。

里面需要重写两个函数,一个是构造函数init,一个是前向函数forward(区别于backword反向传播,后面会学习到),super()的作用是调用父类构造函数确保子函数正常运行,在forward中可以写相关的训练操作

可以参考Pytorch的官方文档,里面有对Module的详细介绍

Module --- PyTorch 2.3 documentationhttps://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

3、利用模型训练

创建神经网络模型实例对象,利用数据进行训练,得出训练结果并输出

注意:输入的类型为tensor张量

python 复制代码
w = W()
x = torch.tensor(1.0)

输出的训练结果为tensor张量

bash 复制代码
tensor(2.)

三、完整代码展示

python 复制代码
# -*- coding: utf-8 -*-
# @Author: hxm
import torch
from torch import nn

class W(nn.Module):

    def __init__(self):
        super(W, self).__init__()

    def forward(self,input):
        output = input + 1
        return output

w = W()
x = torch.tensor(1.0)
output = w(x)
print(output)
相关推荐
杰米不放弃2 分钟前
AI大模型应用开发学习-26【20251227】
人工智能·学习
执笔论英雄34 分钟前
【RL】Megatron使学习forward_backward_func返回值
学习
幺零九零零1 小时前
压测学习-JMeter
学习·jmeter
lkbhua莱克瓦242 小时前
基础-函数
开发语言·数据库·笔记·sql·mysql·函数
程途拾光1582 小时前
自监督学习在无标签数据中的潜力释放
人工智能·学习
yuxb732 小时前
Kubernetes核心组件详解与实践:Service
笔记·kubernetes
软件技术NINI2 小时前
JavaScript性能优化实战指南
前端·css·学习·html
Blossom.1182 小时前
多模态大模型LoRA微调实战:从零构建企业级图文检索系统
人工智能·python·深度学习·学习·react.js·django·transformer
一 乐3 小时前
健身房预约|基于springboot + vue健身房预约小程序系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·学习·小程序
sbc-study3 小时前
comsol学习-碱性电解槽堆中的分流-电化学,水解电槽,碱性
学习·comsol·电解槽·碱性·非局部耦合算子