漫谈人类态势感知的Transformer机理

人类的态势感知能力是指人类对周围环境的感知和理解能力,可以通过感知环境中的各种信息来判断当前的情境和态势。Transformer模型是一种常用的神经网络结构,用于处理自然语言处理任务和计算机视觉任务。下面例子可以说明人类态势感知的Transformer机理:

假设有一个人类正在观察一个团队进行足球比赛。这个团队有11名球员和一个裁判,比赛场地上有一个足球,以及四个球门。这个人类使用他的视觉系统感知到这个场景,并通过他的大脑进行处理来理解这个场景。

1、输入编码

人类的视觉系统将场景的各个元素(球员、裁判、球门等)的视觉信息转化为电信号,并传输到大脑的感知区域。Transformer的输入编码层也有类似的作用,将输入的文本或图像等信息转化为向量表示。

2、自注意力机制

人类的大脑中存在自注意力机制,该机制能够在处理场景时,关注和加权不同元素的重要性。比如,在观看足球比赛时,人类的大脑可能会将注意力集中在球员和足球上,而对裁判和其他场景元素的重要性较低。Transformer模型中的自注意力机制也类似,通过在输入序列中计算不同位置之间的注意力权重,来关注和加权不同位置的信息。

3、多头注意力

人类的大脑可以同时处理多个信息,例如,同时关注足球的位置、球员的动作和裁判的指示。Transformer模型中的多头注意力机制也具备相似的功能,可以同时关注不同位置和不同类型的信息。

4、编码器和解码器

人类的大脑对观察到的信息进行编码和整理,以便更好地理解和预测。Transformer模型中的编码器和解码器层也具备相似的功能,通过多层神经网络结构对输入序列进行编码和解码,以提取和整理输入序列的特征。

通过以上步骤,人类可以感知和理解场景中的不同元素和关系,从而得出当前的情境和态势。Transformer模型也可以通过类似的机制,对输入的文本或图像等进行处理和理解,以完成不同的任务。

相关推荐
Juchecar15 分钟前
母语,塑造和构成了我们的思维过程本身
人工智能
苏打水com21 分钟前
0基础学前端:100天拿offer实战课(第3天)—— CSS基础美化:给网页“精装修”的5大核心技巧
人工智能·python·tensorflow
NON-JUDGMENTAL27 分钟前
CyberSecEval 2
人工智能
智驱力人工智能31 分钟前
智能安全管理 基于视觉分析的玩手机检测系统 手机行为AI模型训练 边缘计算手机行为监测设备
人工智能·安全·目标检测·计算机视觉·智能手机·视觉检测·边缘计算
芯盾时代34 分钟前
CIPS系统迎来重大升级
大数据·人工智能·跨境支付·芯盾时代
ManageEngineITSM35 分钟前
重构可见性:IT资产管理的下一次觉醒
大数据·人工智能·重构·自动化·itsm·工单系统
摘星观月1 小时前
【深度学习5】多层感知机
人工智能·深度学习
欧阳码农1 小时前
AI提效这么多,为什么不试试自己开发N个产品呢?
前端·人工智能·后端
Blossom.1181 小时前
把AI“贴”进路灯柱:1KB决策树让老旧路灯自己报「灯头松动」
java·人工智能·python·深度学习·算法·决策树·机器学习
IT_陈寒1 小时前
SpringBoot 3.x 中被低估的10个隐藏特性,让你的开发效率提升50%
前端·人工智能·后端