漫谈人类态势感知的Transformer机理

人类的态势感知能力是指人类对周围环境的感知和理解能力,可以通过感知环境中的各种信息来判断当前的情境和态势。Transformer模型是一种常用的神经网络结构,用于处理自然语言处理任务和计算机视觉任务。下面例子可以说明人类态势感知的Transformer机理:

假设有一个人类正在观察一个团队进行足球比赛。这个团队有11名球员和一个裁判,比赛场地上有一个足球,以及四个球门。这个人类使用他的视觉系统感知到这个场景,并通过他的大脑进行处理来理解这个场景。

1、输入编码

人类的视觉系统将场景的各个元素(球员、裁判、球门等)的视觉信息转化为电信号,并传输到大脑的感知区域。Transformer的输入编码层也有类似的作用,将输入的文本或图像等信息转化为向量表示。

2、自注意力机制

人类的大脑中存在自注意力机制,该机制能够在处理场景时,关注和加权不同元素的重要性。比如,在观看足球比赛时,人类的大脑可能会将注意力集中在球员和足球上,而对裁判和其他场景元素的重要性较低。Transformer模型中的自注意力机制也类似,通过在输入序列中计算不同位置之间的注意力权重,来关注和加权不同位置的信息。

3、多头注意力

人类的大脑可以同时处理多个信息,例如,同时关注足球的位置、球员的动作和裁判的指示。Transformer模型中的多头注意力机制也具备相似的功能,可以同时关注不同位置和不同类型的信息。

4、编码器和解码器

人类的大脑对观察到的信息进行编码和整理,以便更好地理解和预测。Transformer模型中的编码器和解码器层也具备相似的功能,通过多层神经网络结构对输入序列进行编码和解码,以提取和整理输入序列的特征。

通过以上步骤,人类可以感知和理解场景中的不同元素和关系,从而得出当前的情境和态势。Transformer模型也可以通过类似的机制,对输入的文本或图像等进行处理和理解,以完成不同的任务。

相关推荐
qq_416276421 小时前
LOFAR物理频谱特征提取及实现
人工智能
Python图像识别2 小时前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
余俊晖2 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国3 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub4 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
哥布林学者5 小时前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(二)
深度学习·ai
weixin_519535775 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a5 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void5 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG5 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全