漫谈人类态势感知的Transformer机理

人类的态势感知能力是指人类对周围环境的感知和理解能力,可以通过感知环境中的各种信息来判断当前的情境和态势。Transformer模型是一种常用的神经网络结构,用于处理自然语言处理任务和计算机视觉任务。下面例子可以说明人类态势感知的Transformer机理:

假设有一个人类正在观察一个团队进行足球比赛。这个团队有11名球员和一个裁判,比赛场地上有一个足球,以及四个球门。这个人类使用他的视觉系统感知到这个场景,并通过他的大脑进行处理来理解这个场景。

1、输入编码

人类的视觉系统将场景的各个元素(球员、裁判、球门等)的视觉信息转化为电信号,并传输到大脑的感知区域。Transformer的输入编码层也有类似的作用,将输入的文本或图像等信息转化为向量表示。

2、自注意力机制

人类的大脑中存在自注意力机制,该机制能够在处理场景时,关注和加权不同元素的重要性。比如,在观看足球比赛时,人类的大脑可能会将注意力集中在球员和足球上,而对裁判和其他场景元素的重要性较低。Transformer模型中的自注意力机制也类似,通过在输入序列中计算不同位置之间的注意力权重,来关注和加权不同位置的信息。

3、多头注意力

人类的大脑可以同时处理多个信息,例如,同时关注足球的位置、球员的动作和裁判的指示。Transformer模型中的多头注意力机制也具备相似的功能,可以同时关注不同位置和不同类型的信息。

4、编码器和解码器

人类的大脑对观察到的信息进行编码和整理,以便更好地理解和预测。Transformer模型中的编码器和解码器层也具备相似的功能,通过多层神经网络结构对输入序列进行编码和解码,以提取和整理输入序列的特征。

通过以上步骤,人类可以感知和理解场景中的不同元素和关系,从而得出当前的情境和态势。Transformer模型也可以通过类似的机制,对输入的文本或图像等进行处理和理解,以完成不同的任务。

相关推荐
vocal6 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua7 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter15 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD15 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus27 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能32 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客37 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理