【训练与预测】02 - 完整的模型验证套路

02 - 完整的模型验证套路

模型图

验证一个模型就是指使用已经训练好的模型,然后给它提供输入。

test.py

python 复制代码
import torch
import torchvision
from PIL import Image

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_path = r"images/鸡毛.jpg"
# 加入.convert("RGB")可以适应各种格式的图片,例如png是RGBA四个通道,转换后变为类似jpg的三个通道RGB
image = Image.open(image_path).convert("RGB")
# 重新变换图片尺寸,然后转换为张量
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
# 输出图片尺寸
print(image.shape)
# 加载模型
model = torch.load(r"myNet_pth/myNet_trained_9.pth")
# 将模型用GPU加载
model = model.to(device)
# 使用图片
image = torch.reshape(image, (1, 3, 32, 32))
# 将图片用GPU加载
image = image.to(device)
# 模型设置为测试模式
model.eval()
# 忽略梯度
with torch.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

注意,如果是使用GPU保存的模型,然后使用CPU预测的话,需要在torch.load中加入另一个参数:map_location=torch.device("cpu")

这边我使用一个epoch=30的模型进行预测。

CIFAR10数据集的输出对应类别:

相关推荐
纪伊路上盛名在21 分钟前
(鱼书)深度学习入门1:python入门
人工智能·python·深度学习
Shuai@24 分钟前
VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge
人工智能·语言模型·自然语言处理
动亦定26 分钟前
AI与物联网(IoT)的融合
人工智能·物联网
咸鱼鲸1 小时前
【PyTorch】PyTorch中数据准备工作(AI生成)
人工智能·pytorch·python
停走的风1 小时前
二刷(李宏毅深度学习,醍醐灌顶,长刷长爽)
人工智能·深度学习
qinyia1 小时前
Wisdom SSH:探索AI助手在复杂运维任务中的卓越表现
运维·人工智能·ssh
TY-20251 小时前
二、深度学习——损失函数
人工智能·深度学习
Python×CATIA工业智造1 小时前
列表页与详情页的智能识别:多维度判定方法与工业级实现
爬虫·深度学习·pycharm
京东零售技术1 小时前
让大模型更懂你,京东零售的算法工程师做了这些事
人工智能·求职
PyAIExplorer1 小时前
图像梯度处理与边缘检测:OpenCV 实战指南
人工智能·opencv·计算机视觉