【训练与预测】02 - 完整的模型验证套路

02 - 完整的模型验证套路

模型图

验证一个模型就是指使用已经训练好的模型,然后给它提供输入。

test.py

python 复制代码
import torch
import torchvision
from PIL import Image

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_path = r"images/鸡毛.jpg"
# 加入.convert("RGB")可以适应各种格式的图片,例如png是RGBA四个通道,转换后变为类似jpg的三个通道RGB
image = Image.open(image_path).convert("RGB")
# 重新变换图片尺寸,然后转换为张量
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
# 输出图片尺寸
print(image.shape)
# 加载模型
model = torch.load(r"myNet_pth/myNet_trained_9.pth")
# 将模型用GPU加载
model = model.to(device)
# 使用图片
image = torch.reshape(image, (1, 3, 32, 32))
# 将图片用GPU加载
image = image.to(device)
# 模型设置为测试模式
model.eval()
# 忽略梯度
with torch.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

注意,如果是使用GPU保存的模型,然后使用CPU预测的话,需要在torch.load中加入另一个参数:map_location=torch.device("cpu")

这边我使用一个epoch=30的模型进行预测。

CIFAR10数据集的输出对应类别:

相关推荐
sensen_kiss3 分钟前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
vvoennvv10 分钟前
【Python TensorFlow】 BiTCN-LSTM双向时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·tensorflow·lstm·tcn
非著名架构师19 分钟前
智慧气象护航:构建陆海空立体交通气象安全保障体系
大数据·人工智能·安全·疾风气象大模型4.0·疾风气象大模型·风光功率预测
tech-share32 分钟前
基于pytorch 自建AI大模型
人工智能·深度学习·机器学习·gpu算力
夏洛克信徒1 小时前
从 “工具” 到 “代理”:Gemini 3.0 重构 AI 能力边界,开启智能协作新纪元
大数据·人工智能·神经网络
AI浩1 小时前
回归基础:让去噪生成模型真正去噪
人工智能·数据挖掘·回归
ekprada1 小时前
DAY 16 数组的常见操作和形状
人工智能·python·机器学习
用户5191495848451 小时前
C#扩展成员全面解析:从方法到属性的演进
人工智能·aigc
柳鲲鹏1 小时前
OpenCV: 光流法python代码
人工智能·python·opencv
金融小师妹2 小时前
基于LSTM-GARCH模型:三轮黄金周期特征提取与多因子定价机制解构
人工智能·深度学习·1024程序员节