【训练与预测】02 - 完整的模型验证套路

02 - 完整的模型验证套路

模型图

验证一个模型就是指使用已经训练好的模型,然后给它提供输入。

test.py

python 复制代码
import torch
import torchvision
from PIL import Image

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_path = r"images/鸡毛.jpg"
# 加入.convert("RGB")可以适应各种格式的图片,例如png是RGBA四个通道,转换后变为类似jpg的三个通道RGB
image = Image.open(image_path).convert("RGB")
# 重新变换图片尺寸,然后转换为张量
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
# 输出图片尺寸
print(image.shape)
# 加载模型
model = torch.load(r"myNet_pth/myNet_trained_9.pth")
# 将模型用GPU加载
model = model.to(device)
# 使用图片
image = torch.reshape(image, (1, 3, 32, 32))
# 将图片用GPU加载
image = image.to(device)
# 模型设置为测试模式
model.eval()
# 忽略梯度
with torch.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

注意,如果是使用GPU保存的模型,然后使用CPU预测的话,需要在torch.load中加入另一个参数:map_location=torch.device("cpu")

这边我使用一个epoch=30的模型进行预测。

CIFAR10数据集的输出对应类别:

相关推荐
KG_LLM图谱增强大模型2 分钟前
LLM能否通过语料库统计量成为可靠的检索触发器?
人工智能·知识图谱
呆萌很4 分钟前
transforms.ColorJitter 数据增强工具
人工智能
Sheffi6611 分钟前
AI智能体编程时代的技术架构:Claude Agent与OpenAI Codex在Xcode中的集成原理
人工智能·架构·xcode
Purple Coder18 分钟前
神经网络与深度学习
人工智能·深度学习·神经网络
龙山云仓26 分钟前
No156:AI中国故事-对话司马迁——史家绝唱与AI记忆:时间叙事与因果之链
大数据·开发语言·人工智能·python·机器学习
niuniudengdeng31 分钟前
一种基于高维物理张量与XRF实景复刻的一步闭式解工业级3D打印品生成模型
人工智能·python·数学·算法·3d
AI周红伟1 小时前
周红伟:Agent Skills+OpenClaw+RAG+Agent+SeeDance2.0企业智能体智能体应用实战
人工智能·大模型·智能体·seedance
张小凡vip1 小时前
OpenClaw简介--windows系统安装OpenClaw
人工智能·windows·openclaw
HaiLang_IT1 小时前
计算机科学与技术专业优质选题推荐 选题合集 | 人工智能/自然语言处理/计算机视觉
人工智能·自然语言处理·课程设计
Rolei_zl1 小时前
AIGC(生成式AI)试用 46 -- AI与软件开发过程1
人工智能·aigc