【训练与预测】02 - 完整的模型验证套路

02 - 完整的模型验证套路

模型图

验证一个模型就是指使用已经训练好的模型,然后给它提供输入。

test.py

python 复制代码
import torch
import torchvision
from PIL import Image

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_path = r"images/鸡毛.jpg"
# 加入.convert("RGB")可以适应各种格式的图片,例如png是RGBA四个通道,转换后变为类似jpg的三个通道RGB
image = Image.open(image_path).convert("RGB")
# 重新变换图片尺寸,然后转换为张量
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
# 输出图片尺寸
print(image.shape)
# 加载模型
model = torch.load(r"myNet_pth/myNet_trained_9.pth")
# 将模型用GPU加载
model = model.to(device)
# 使用图片
image = torch.reshape(image, (1, 3, 32, 32))
# 将图片用GPU加载
image = image.to(device)
# 模型设置为测试模式
model.eval()
# 忽略梯度
with torch.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

注意,如果是使用GPU保存的模型,然后使用CPU预测的话,需要在torch.load中加入另一个参数:map_location=torch.device("cpu")

这边我使用一个epoch=30的模型进行预测。

CIFAR10数据集的输出对应类别:

相关推荐
t***L2661 小时前
JavaScript在机器学习中的库
开发语言·javascript·机器学习
明月照山海-1 小时前
机器学习周报二十三
人工智能·机器学习
qq_17082750 CNC注塑机数采1 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·rnn·机器学习·cnn·gru·tensorflow
科研面壁者2 小时前
SPSS——独立样本T检验
数据库·人工智能·机器学习·信息可视化·数据分析·spss·数据处理
云栈开源日记2 小时前
Python 开发技术栈梳理:从数据库、爬虫到 Django 与机器学习
数据库·爬虫·python·学习·机器学习·django
ToTensor3 小时前
Tree of Thoughts:让大语言模型像人类一样思考
人工智能·语言模型·自然语言处理
shangjian0076 小时前
AI大模型-评价指标-相关术语
人工智能·算法
江河地笑6 小时前
opencv、cmake、vcpkg
人工智能·opencv·计算机视觉
海边夕阳20067 小时前
【每天一个AI小知识】:什么是卷积神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习·cnn
一只会写代码的猫7 小时前
可持续发展中的绿色科技:推动未来的环保创新
大数据·人工智能