【训练与预测】02 - 完整的模型验证套路

02 - 完整的模型验证套路

模型图

验证一个模型就是指使用已经训练好的模型,然后给它提供输入。

test.py

python 复制代码
import torch
import torchvision
from PIL import Image

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_path = r"images/鸡毛.jpg"
# 加入.convert("RGB")可以适应各种格式的图片,例如png是RGBA四个通道,转换后变为类似jpg的三个通道RGB
image = Image.open(image_path).convert("RGB")
# 重新变换图片尺寸,然后转换为张量
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
# 输出图片尺寸
print(image.shape)
# 加载模型
model = torch.load(r"myNet_pth/myNet_trained_9.pth")
# 将模型用GPU加载
model = model.to(device)
# 使用图片
image = torch.reshape(image, (1, 3, 32, 32))
# 将图片用GPU加载
image = image.to(device)
# 模型设置为测试模式
model.eval()
# 忽略梯度
with torch.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

注意,如果是使用GPU保存的模型,然后使用CPU预测的话,需要在torch.load中加入另一个参数:map_location=torch.device("cpu")

这边我使用一个epoch=30的模型进行预测。

CIFAR10数据集的输出对应类别:

相关推荐
FreeCode3 分钟前
LangChain1.0智能体开发:消息组件(Messages)
人工智能·langchain·agent
视觉AI4 分钟前
为什么 transformers 要 import TensorFlow
人工智能·tensorflow·neo4j
Coovally AI模型快速验证7 分钟前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion
ZEGO即构开发者7 分钟前
【ZEGO即构开发者日报】Soul AI Lab开源播客语音合成模型;腾讯混元推出国内首个交互式AI播客;ChatGPT Go向用户免费开放一年......
人工智能·aigc·语音识别·实时音视频
沫儿笙12 分钟前
ABB焊接机器人节气装置
人工智能·机器人
Geo_V18 分钟前
提示词工程
人工智能·python·算法·ai
陈果然DeepVersion37 分钟前
Java大厂面试真题:Spring Boot+Kafka+AI智能客服场景全流程解析(七)
java·人工智能·spring boot·微服务·kafka·面试题·rag
B站_计算机毕业设计之家41 分钟前
计算机视觉:python车辆行人检测与跟踪系统 YOLO模型 SORT算法 PyQt5界面 目标检测+目标跟踪 深度学习 计算机✅
人工智能·python·深度学习·算法·yolo·目标检测·机器学习
云资源服务商1 小时前
阿里云无影AgentBay:开启AI智能体“自进化”时代的云端基础设施
人工智能·阿里云·云计算
SEO_juper1 小时前
AI SEO实战:利用人工智能提升网站排名与流量的完整策略
人工智能·搜索引擎·百度·ai·seo·数字营销