LLM大语言模型(十四):LangChain中Tool的不同定义方式,对prompt的影响

背景

ChatGLM3-6B的函数调用功能,和LangChain的Tool调用,在prompt上并没有对齐。

参考:LLM大语言模型(十二):关于ChatGLM3-6B不兼容Langchain 的Function Call_error: valueerror: caught exception: unknown forma-CSDN博客

因此在LangChain的Agent中调用ChatGLM3-6B时,单独对prompt进行了转换。

参考:LLM大语言模型(十三):ChatGLM3-6B兼容Langchain的Function Call的一步一步的详细转换过程记录_langchain+chatglm3-CSDN博客

今日发现,使用LangChain的不同方式定义的tool,之前的prompt转换失效了。

LangChain中不同Tool定义方式,生成的prompt不同

方式一:@tool

python 复制代码
from langchain_core.tools import tool

@tool

def calculator(calculation:str)->str:

    "Useful for when you need to calculate math problems"

    calculation = calculation.replace("^", "**")

    if "sqrt" in calculation:

        calculation = calculation.replace("sqrt", "math.sqrt")

    elif "log" in calculation:

        calculation = calculation.replace("log", "math.log")

    return eval(calculation)

在Agent执行时生成的prompt如下,关注红色部分:

'System: Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n

calculator: calculator(calculation: str) -> str - Useful for when you need to calculate math problems, args: {\'calculation\': {\'title\': \'Calculation\', \'type\': \'string\'}}\n\n

Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or calculator\n\nProvide only ONE action per JSON_BLOB, as shown:\\n\\n\`\`\`\\n{\\n "action": TOOL_NAME,\n "action_input": INPUT\\n}\\n\`\`\`\\n\\nFollow this format:\\n\\nQuestion: input question to answer\\nThought: consider previous and subsequent steps\\nAction:\\n\`\`\`\\nJSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}\n\nBegin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation\nHuman: 34 * 34\n\n\n (reminder to respond in a JSON blob no matter what)'

方式二:继承BaseTool

复制代码
import os
import requests

from typing import Type, Any
from langchain.tools import BaseTool
from pydantic import BaseModel, Field

class WeatherInput(BaseModel):
    location: str = Field(description="the location need to check the weather")


class Weather(BaseTool):
    name = "weather"
    description = "Use for searching weather at a specific location"
    args_schema: Type[BaseModel] = WeatherInput

    def __init__(self):
        super().__init__()

    def _run(self, location: str) -> dict[str, Any]:
        weather = {
            "temperature": "20度",
            "description": "温度适中",
        }
        return weather

在Agent执行时生成的prompt如下,关注红色部分:

System: Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n

Calculator: Useful for when you need to calculate math problems, args: {\'calculation\': {\'description\': \'calculation to perform\', \'title\': \'Calculation\', \'type\': \'string\'}}\n\n

Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or Calculator\n\nProvide only ONE action per JSON_BLOB, as shown:\\n\\n\`\`\`\\n{\\n "action": TOOL_NAME,\n "action_input": INPUT\\n}\\n\`\`\`\\n\\nFollow this format:\\n\\nQuestion: input question to answer\\nThought: consider previous and subsequent steps\\nAction:\\n\`\`\`\\nJSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}\n\nBegin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation\nHuman: 34 * 34\n\n\n (reminder to respond in a JSON blob no matter what)

因为生成的prompt不同了,所以之前的prompt转换也就失效了。

LangChain使用上的一个坑。

相关推荐
沈询-阿里7 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
且去填词11 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
EdisonZhou12 小时前
MAF快速入门(11)并行工作流
llm·aigc·agent·.net core
寂寞恋上夜12 小时前
枚举值怎么管理:固定枚举/字典表/接口动态(附管理策略)
prompt·状态模式·markdown转xmind·deepseek思维导图
进击的松鼠13 小时前
LangChain 实战 | 快速搭建 Python 开发环境
python·langchain·llm
xinxin本尊13 小时前
通过langchain的LCEL创建带历史感知的检索链
langchain
职业码农NO.113 小时前
AI 技术栈完整解析,从 GPU 到应用的五层架构
人工智能·架构·系统架构·aigc·agent
资深web全栈开发14 小时前
深度对比 LangChain 8 种文档分割方式:从逻辑底层到选型实战
深度学习·自然语言处理·langchain
FranzLiszt184714 小时前
基于One API 将本地 Ollama 模型接入 FastGPT
langchain·fastgpt·rag·ollama·one api
悟乙己14 小时前
使用TimeGPT进行时间序列预测案例解析
机器学习·大模型·llm·时间序列·预测