LLM大语言模型(十四):LangChain中Tool的不同定义方式,对prompt的影响

背景

ChatGLM3-6B的函数调用功能,和LangChain的Tool调用,在prompt上并没有对齐。

参考:LLM大语言模型(十二):关于ChatGLM3-6B不兼容Langchain 的Function Call_error: valueerror: caught exception: unknown forma-CSDN博客

因此在LangChain的Agent中调用ChatGLM3-6B时,单独对prompt进行了转换。

参考:LLM大语言模型(十三):ChatGLM3-6B兼容Langchain的Function Call的一步一步的详细转换过程记录_langchain+chatglm3-CSDN博客

今日发现,使用LangChain的不同方式定义的tool,之前的prompt转换失效了。

LangChain中不同Tool定义方式,生成的prompt不同

方式一:@tool

python 复制代码
from langchain_core.tools import tool

@tool

def calculator(calculation:str)->str:

    "Useful for when you need to calculate math problems"

    calculation = calculation.replace("^", "**")

    if "sqrt" in calculation:

        calculation = calculation.replace("sqrt", "math.sqrt")

    elif "log" in calculation:

        calculation = calculation.replace("log", "math.log")

    return eval(calculation)

在Agent执行时生成的prompt如下,关注红色部分:

'System: Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n

calculator: calculator(calculation: str) -> str - Useful for when you need to calculate math problems, args: {\'calculation\': {\'title\': \'Calculation\', \'type\': \'string\'}}\n\n

Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or calculator\n\nProvide only ONE action per JSON_BLOB, as shown:\\n\\n\`\`\`\\n{\\n "action": TOOL_NAME,\n "action_input": INPUT\\n}\\n\`\`\`\\n\\nFollow this format:\\n\\nQuestion: input question to answer\\nThought: consider previous and subsequent steps\\nAction:\\n\`\`\`\\nJSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}\n\nBegin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation\nHuman: 34 * 34\n\n\n (reminder to respond in a JSON blob no matter what)'

方式二:继承BaseTool

复制代码
import os
import requests

from typing import Type, Any
from langchain.tools import BaseTool
from pydantic import BaseModel, Field

class WeatherInput(BaseModel):
    location: str = Field(description="the location need to check the weather")


class Weather(BaseTool):
    name = "weather"
    description = "Use for searching weather at a specific location"
    args_schema: Type[BaseModel] = WeatherInput

    def __init__(self):
        super().__init__()

    def _run(self, location: str) -> dict[str, Any]:
        weather = {
            "temperature": "20度",
            "description": "温度适中",
        }
        return weather

在Agent执行时生成的prompt如下,关注红色部分:

System: Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n

Calculator: Useful for when you need to calculate math problems, args: {\'calculation\': {\'description\': \'calculation to perform\', \'title\': \'Calculation\', \'type\': \'string\'}}\n\n

Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or Calculator\n\nProvide only ONE action per JSON_BLOB, as shown:\\n\\n\`\`\`\\n{\\n "action": TOOL_NAME,\n "action_input": INPUT\\n}\\n\`\`\`\\n\\nFollow this format:\\n\\nQuestion: input question to answer\\nThought: consider previous and subsequent steps\\nAction:\\n\`\`\`\\nJSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}\n\nBegin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation\nHuman: 34 * 34\n\n\n (reminder to respond in a JSON blob no matter what)

因为生成的prompt不同了,所以之前的prompt转换也就失效了。

LangChain使用上的一个坑。

相关推荐
花酒锄作田3 小时前
[MCP][04]Sampling示例
llm·mcp
聚客AI4 小时前
🚫万能Agent兜底:当规划缺失工具时,AI如何自救
人工智能·llm·agent
semantist@语校7 小时前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
ChinaRainbowSea8 小时前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
安思派Anspire9 小时前
从 ETL 到 ELT 再到 EAI:AI 如何重塑数据处理
aigc·openai·agent
方始终_9 小时前
做一个图表MCP Server,分分钟的事儿?
前端·agent·mcp
zzywxc78710 小时前
AI工具全景洞察:从智能编码到模型训练的全链路剖析
人工智能·spring·ios·prompt·ai编程
花酒锄作田10 小时前
[MCP][03]使用FastMCP开发MCP应用
llm·mcp
玲小珑10 小时前
LangChain.js 完全开发手册(八)Agent 智能代理系统开发
前端·langchain·ai编程
wL魔法师11 小时前
【LLM】大模型训练中的稳定性问题
人工智能·pytorch·深度学习·llm