机器学习之集成学习

目录

目录

一、概述

1、集成学习的优点

2、应用场景

二、Bagging和Boosting思想

1、Bagging思想

2、Boosting思想

3、两种思想对比

三、Bagging之随机森林算法

1、概述

2、实现过程

3、API

四、Boosting之Adaboost算法

1、概述

2、算法推导过程

3、实现流程

五、Boosting之GBDT算法

1、BDT概述

2、GBDT概述

3、GBDT算法推导

4、梯度提升树的实现流程

5、注意事项

六、Boosting之XGBoost算法

1、概述

2、算法思想

3、构建流程

七、总结


前言

集成学习(Ensemble Learning),作为机器学习领域的一个重要组成部分,致力于通过组合多个学习器(通常称为基学习器或弱学习器)来提高整体模型的预测性能。它的基本思想是将"弱者联合成强者",即将多个可能表现一般但各具特色的学习器集成起来,共同构建一个性能更为优越的强学习器,下面结合博主个人理解,展开叙述集成学习的核心思想和API介绍,以及随机森林,Adaboost,XGBoost,GBDT等算法特点。

一、概述

1、集成学习的优点

集成学习的主要优势在于其可以提高模型的准确性、泛化能力、鲁棒性和可靠性。通过整合多个学习器的预测结果,集成学习能够降低预测的不确定性,提高模型的稳定性。此外,集成学习还可以减少过拟合的风险,因为不同的学习器可能在不同的数据集上表现出不同的优势,从而降低对特定数据或特定特征的依赖。

2、应用场景

集成学习的应用场景十分广泛,包括分类问题集成、回归问题集成、特征选取集成和异常点检测集成等。在诸多领域中,如自然语言处理、数据挖掘和分析、智能交通、医疗健康、金融领域等,集成学习都展现出了其强大的应用潜力。

二、Bagging和Boosting思想

1、Bagging思想

2、Boosting思想

3、两种思想对比

三、Bagging之随机森林算法

1、概述

2、实现过程

3、API

四、Boosting之Adaboost算法

1、概述

2、算法推导过程

3、实现流程

五、Boosting之GBDT算法

1、BDT概述

2、GBDT概述

3、GBDT算法推导

4、梯度提升树的实现流程

5、注意事项

六、Boosting之XGBoost算法

1、概述

2、算法思想

3、构建流程

七、总结

总的来说,集成学习通过组合多个学习器来提高模型的性能,具有诸多优势和广泛的应用场景。在机器学习领域,集成学习已经成为一种重要的技术,被广泛应用于各种实际问题中。

相关推荐
vocal4 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua5 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter13 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD13 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus25 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能30 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客35 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条43 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po44 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理