机器学习之集成学习

目录

目录

一、概述

1、集成学习的优点

2、应用场景

二、Bagging和Boosting思想

1、Bagging思想

2、Boosting思想

3、两种思想对比

三、Bagging之随机森林算法

1、概述

2、实现过程

3、API

四、Boosting之Adaboost算法

1、概述

2、算法推导过程

3、实现流程

五、Boosting之GBDT算法

1、BDT概述

2、GBDT概述

3、GBDT算法推导

4、梯度提升树的实现流程

5、注意事项

六、Boosting之XGBoost算法

1、概述

2、算法思想

3、构建流程

七、总结


前言

集成学习(Ensemble Learning),作为机器学习领域的一个重要组成部分,致力于通过组合多个学习器(通常称为基学习器或弱学习器)来提高整体模型的预测性能。它的基本思想是将"弱者联合成强者",即将多个可能表现一般但各具特色的学习器集成起来,共同构建一个性能更为优越的强学习器,下面结合博主个人理解,展开叙述集成学习的核心思想和API介绍,以及随机森林,Adaboost,XGBoost,GBDT等算法特点。

一、概述

1、集成学习的优点

集成学习的主要优势在于其可以提高模型的准确性、泛化能力、鲁棒性和可靠性。通过整合多个学习器的预测结果,集成学习能够降低预测的不确定性,提高模型的稳定性。此外,集成学习还可以减少过拟合的风险,因为不同的学习器可能在不同的数据集上表现出不同的优势,从而降低对特定数据或特定特征的依赖。

2、应用场景

集成学习的应用场景十分广泛,包括分类问题集成、回归问题集成、特征选取集成和异常点检测集成等。在诸多领域中,如自然语言处理、数据挖掘和分析、智能交通、医疗健康、金融领域等,集成学习都展现出了其强大的应用潜力。

二、Bagging和Boosting思想

1、Bagging思想

2、Boosting思想

3、两种思想对比

三、Bagging之随机森林算法

1、概述

2、实现过程

3、API

四、Boosting之Adaboost算法

1、概述

2、算法推导过程

3、实现流程

五、Boosting之GBDT算法

1、BDT概述

2、GBDT概述

3、GBDT算法推导

4、梯度提升树的实现流程

5、注意事项

六、Boosting之XGBoost算法

1、概述

2、算法思想

3、构建流程

七、总结

总的来说,集成学习通过组合多个学习器来提高模型的性能,具有诸多优势和广泛的应用场景。在机器学习领域,集成学习已经成为一种重要的技术,被广泛应用于各种实际问题中。

相关推荐
飞哥数智坊1 天前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三1 天前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯1 天前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp