机器学习之集成学习

目录

目录

一、概述

1、集成学习的优点

2、应用场景

二、Bagging和Boosting思想

1、Bagging思想

2、Boosting思想

3、两种思想对比

三、Bagging之随机森林算法

1、概述

2、实现过程

3、API

四、Boosting之Adaboost算法

1、概述

2、算法推导过程

3、实现流程

五、Boosting之GBDT算法

1、BDT概述

2、GBDT概述

3、GBDT算法推导

4、梯度提升树的实现流程

5、注意事项

六、Boosting之XGBoost算法

1、概述

2、算法思想

3、构建流程

七、总结


前言

集成学习(Ensemble Learning),作为机器学习领域的一个重要组成部分,致力于通过组合多个学习器(通常称为基学习器或弱学习器)来提高整体模型的预测性能。它的基本思想是将"弱者联合成强者",即将多个可能表现一般但各具特色的学习器集成起来,共同构建一个性能更为优越的强学习器,下面结合博主个人理解,展开叙述集成学习的核心思想和API介绍,以及随机森林,Adaboost,XGBoost,GBDT等算法特点。

一、概述

1、集成学习的优点

集成学习的主要优势在于其可以提高模型的准确性、泛化能力、鲁棒性和可靠性。通过整合多个学习器的预测结果,集成学习能够降低预测的不确定性,提高模型的稳定性。此外,集成学习还可以减少过拟合的风险,因为不同的学习器可能在不同的数据集上表现出不同的优势,从而降低对特定数据或特定特征的依赖。

2、应用场景

集成学习的应用场景十分广泛,包括分类问题集成、回归问题集成、特征选取集成和异常点检测集成等。在诸多领域中,如自然语言处理、数据挖掘和分析、智能交通、医疗健康、金融领域等,集成学习都展现出了其强大的应用潜力。

二、Bagging和Boosting思想

1、Bagging思想

2、Boosting思想

3、两种思想对比

三、Bagging之随机森林算法

1、概述

2、实现过程

3、API

四、Boosting之Adaboost算法

1、概述

2、算法推导过程

3、实现流程

五、Boosting之GBDT算法

1、BDT概述

2、GBDT概述

3、GBDT算法推导

4、梯度提升树的实现流程

5、注意事项

六、Boosting之XGBoost算法

1、概述

2、算法思想

3、构建流程

七、总结

总的来说,集成学习通过组合多个学习器来提高模型的性能,具有诸多优势和广泛的应用场景。在机器学习领域,集成学习已经成为一种重要的技术,被广泛应用于各种实际问题中。

相关推荐
Warren2Lynch4 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale4 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant4 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138344 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
多米Domi0115 小时前
0x3f第33天复习 (16;45-18:00)
数据结构·python·算法·leetcode·链表
soldierluo5 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms15 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑5 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei5 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
罗湖老棍子5 小时前
【例4-11】最短网络(agrinet)(信息学奥赛一本通- P1350)
算法·图论·kruskal·prim