Tensorflow2.0笔记 - AutoEncoder做FashionMnist数据集训练

本笔记记录自编码器做FashionMnist数据集训练,关于autoencoder的原理,请自行百度。

复制代码
import os
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, Input,losses
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
from tensorflow.keras.models import Model

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#tf.random.set_seed(12345)
tf.__version__

#加载fashion mnist数据集
(x_train, _), (x_test, _) = datasets.fashion_mnist.load_data()
#图片像素数据范围限值到[0,1]
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

print (x_train.shape)
print (x_test.shape)

h_dim = 64 
class Autoencoder(Model):
  def __init__(self, h_dim):
    super(Autoencoder, self).__init__()
    self.h_dim = h_dim   
    #encoder层,[b, 28, 28] => [b, 784] => [b, h_dim]
    self.encoder = tf.keras.Sequential([
      layers.Flatten(),
      layers.Dense(256, activation='relu'),
      layers.Dense(h_dim, activation='relu'),
    ])
    #decoder层,[b, h_dim] => [b,784] => [b, 28, 28]
    self.decoder = tf.keras.Sequential([
      layers.Dense(784, activation='sigmoid'),
      #恢复成28x28的图片
      layers.Reshape((28, 28))
    ])

  def call(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return decoded

model = Autoencoder(h_dim)

model.compile(optimizer='adam', loss=losses.MeanSquaredError())
model.fit(x_train, x_train,
                epochs=10,
                shuffle=True,
                validation_data=(x_test, x_test))


encoded_imgs = model.encoder(x_test).numpy()
decoded_imgs = model.decoder(encoded_imgs).numpy()
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
  #绘制原始图像
  ax = plt.subplot(2, n, i + 1)
  plt.imshow(x_test[i])
  plt.title("original")
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)

  #绘制重建的图像
  ax = plt.subplot(2, n, i + 1 + n)
  plt.imshow(decoded_imgs[i])
  plt.title("reconstructed")
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()

运行结果:

相关推荐
北邮刘老师7 分钟前
【智能体互联协议解析】北邮ACPs协议和代码与智能体互联AIP标准的关系
人工智能·大模型·智能体·智能体互联网
zhdy567898 分钟前
最简单方法 设置matlab坐标轴刻度标签的字号,设置坐标轴标题和图形标题,并指定字号。画出的图片背景设置为白色,
笔记
亚马逊云开发者17 分钟前
使用Amazon Q Developer CLI快速构建市场分析智能体
人工智能
Coding茶水间23 分钟前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
崇山峻岭之间23 分钟前
Matlab学习笔记02
笔记·学习·matlab
木木em哈哈23 分钟前
C语言多线程
笔记
Rose sait33 分钟前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
福客AI智能客服37 分钟前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
司南OpenCompass1 小时前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS1 小时前
如何看待企业自建AI知识库?
人工智能·alm