Tensorflow2.0笔记 - AutoEncoder做FashionMnist数据集训练

本笔记记录自编码器做FashionMnist数据集训练,关于autoencoder的原理,请自行百度。

复制代码
import os
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, Input,losses
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
from tensorflow.keras.models import Model

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#tf.random.set_seed(12345)
tf.__version__

#加载fashion mnist数据集
(x_train, _), (x_test, _) = datasets.fashion_mnist.load_data()
#图片像素数据范围限值到[0,1]
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

print (x_train.shape)
print (x_test.shape)

h_dim = 64 
class Autoencoder(Model):
  def __init__(self, h_dim):
    super(Autoencoder, self).__init__()
    self.h_dim = h_dim   
    #encoder层,[b, 28, 28] => [b, 784] => [b, h_dim]
    self.encoder = tf.keras.Sequential([
      layers.Flatten(),
      layers.Dense(256, activation='relu'),
      layers.Dense(h_dim, activation='relu'),
    ])
    #decoder层,[b, h_dim] => [b,784] => [b, 28, 28]
    self.decoder = tf.keras.Sequential([
      layers.Dense(784, activation='sigmoid'),
      #恢复成28x28的图片
      layers.Reshape((28, 28))
    ])

  def call(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return decoded

model = Autoencoder(h_dim)

model.compile(optimizer='adam', loss=losses.MeanSquaredError())
model.fit(x_train, x_train,
                epochs=10,
                shuffle=True,
                validation_data=(x_test, x_test))


encoded_imgs = model.encoder(x_test).numpy()
decoded_imgs = model.decoder(encoded_imgs).numpy()
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
  #绘制原始图像
  ax = plt.subplot(2, n, i + 1)
  plt.imshow(x_test[i])
  plt.title("original")
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)

  #绘制重建的图像
  ax = plt.subplot(2, n, i + 1 + n)
  plt.imshow(decoded_imgs[i])
  plt.title("reconstructed")
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()

运行结果:

相关推荐
这个人懒得名字都没写1 天前
Python包管理新纪元:uv
python·conda·pip·uv
有泽改之_1 天前
leetcode146、OrderedDict与lru_cache
python·leetcode·链表
im_AMBER1 天前
Leetcode 74 K 和数对的最大数目
数据结构·笔记·学习·算法·leetcode
Blossom.1181 天前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
是毛毛吧1 天前
边打游戏边学Python的5个开源项目
python·开源·github·开源软件·pygame
t198751281 天前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技1 天前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
断剑zou天涯1 天前
【算法笔记】蓄水池算法
笔记·算法
mqiqe1 天前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen1 天前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习