Tensorflow2.0笔记 - AutoEncoder做FashionMnist数据集训练

本笔记记录自编码器做FashionMnist数据集训练,关于autoencoder的原理,请自行百度。

import os
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, Input,losses
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
from tensorflow.keras.models import Model

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#tf.random.set_seed(12345)
tf.__version__

#加载fashion mnist数据集
(x_train, _), (x_test, _) = datasets.fashion_mnist.load_data()
#图片像素数据范围限值到[0,1]
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

print (x_train.shape)
print (x_test.shape)

h_dim = 64 
class Autoencoder(Model):
  def __init__(self, h_dim):
    super(Autoencoder, self).__init__()
    self.h_dim = h_dim   
    #encoder层,[b, 28, 28] => [b, 784] => [b, h_dim]
    self.encoder = tf.keras.Sequential([
      layers.Flatten(),
      layers.Dense(256, activation='relu'),
      layers.Dense(h_dim, activation='relu'),
    ])
    #decoder层,[b, h_dim] => [b,784] => [b, 28, 28]
    self.decoder = tf.keras.Sequential([
      layers.Dense(784, activation='sigmoid'),
      #恢复成28x28的图片
      layers.Reshape((28, 28))
    ])

  def call(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return decoded

model = Autoencoder(h_dim)

model.compile(optimizer='adam', loss=losses.MeanSquaredError())
model.fit(x_train, x_train,
                epochs=10,
                shuffle=True,
                validation_data=(x_test, x_test))


encoded_imgs = model.encoder(x_test).numpy()
decoded_imgs = model.decoder(encoded_imgs).numpy()
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
  #绘制原始图像
  ax = plt.subplot(2, n, i + 1)
  plt.imshow(x_test[i])
  plt.title("original")
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)

  #绘制重建的图像
  ax = plt.subplot(2, n, i + 1 + n)
  plt.imshow(decoded_imgs[i])
  plt.title("reconstructed")
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()

运行结果:

相关推荐
测试杂货铺3 分钟前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
听忆.7 分钟前
手机屏幕上进行OCR识别方案
笔记
艾派森8 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112310 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子14 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing27 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
小码的头发丝、34 分钟前
Django中ListView 和 DetailView类的区别
数据库·python·django
Selina K44 分钟前
shell脚本知识点记录
笔记·shell
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习