似然函数与概率密度函数的区别

似然函数(Likelihood function)是统计学中一个核心概念,用于量化观测数据在给定模型参数下的可能性。它是概率论框架在统计推断中的逆向应用。具体来说,如果有一个概率模型,其中参数为θ,而我们观测到了一些数据D,似然函数L(θ|D)定义为在参数θ下观测数据D出现的概率(或者对于离散情况,是概率质量函数;对于连续情况,则是概率密度函数):

L(θ|D) = P(D|θ)

这里,P(D|θ) 表示在参数θ下数据集D的联合概率分布。需要注意的是,似然函数是参数θ的函数,它衡量的是根据观测数据,模型参数θ有多大的合理性或"似然性"。换句话说,似然函数表达了数据给定(固定)时,不同参数值的适应程度。

似然函数与概率密度函数(Probability Density Function, PDF)有密切的关系,实际上两者在数学形式上可能相同,但它们有着不同的解释和用途。概率密度函数是关于随机变量的函数,描述的是在给定参数下,随机变量取某个值或处于某个区间内的相对可能性;而似然函数则是固定了观测值后,关于参数的函数,它关注的是在观测到的数据下,模型参数取不同值的合理性。

似然函数的一个典型应用是在最大似然估计(Maximum Likelihood Estimation, MLE)中,通过寻找使似然函数达到最大值的参数估计值,以此来确定数据生成过程最有可能的参数设置。简单来说,最大似然估计选择那个能使观测数据看起来最"自然"或"最可能"的参数值。

相关推荐
Small___ming1 天前
【人工智能数学基础】如何理解方差与协方差?
人工智能·概率论
月疯2 天前
样本熵和泊松指数的计算流程!!!
算法·机器学习·概率论
zyq~2 天前
【课堂笔记】概率论-3
笔记·概率论
RE-19013 天前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
phoenix@Capricornus4 天前
样本与样本值
人工智能·机器学习·概率论
qq_ddddd6 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
无风听海7 天前
神经网络之样本方差的无偏估计
人工智能·神经网络·概率论
我要学习别拦我~9 天前
挑战概率直觉:蒙提霍尔问题的解密与应用
经验分享·概率论
一条星星鱼9 天前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
无风听海9 天前
神经网络之从自由度角度理解方差的无偏估计
神经网络·机器学习·概率论