似然函数与概率密度函数的区别

似然函数(Likelihood function)是统计学中一个核心概念,用于量化观测数据在给定模型参数下的可能性。它是概率论框架在统计推断中的逆向应用。具体来说,如果有一个概率模型,其中参数为θ,而我们观测到了一些数据D,似然函数L(θ|D)定义为在参数θ下观测数据D出现的概率(或者对于离散情况,是概率质量函数;对于连续情况,则是概率密度函数):

L(θ|D) = P(D|θ)

这里,P(D|θ) 表示在参数θ下数据集D的联合概率分布。需要注意的是,似然函数是参数θ的函数,它衡量的是根据观测数据,模型参数θ有多大的合理性或"似然性"。换句话说,似然函数表达了数据给定(固定)时,不同参数值的适应程度。

似然函数与概率密度函数(Probability Density Function, PDF)有密切的关系,实际上两者在数学形式上可能相同,但它们有着不同的解释和用途。概率密度函数是关于随机变量的函数,描述的是在给定参数下,随机变量取某个值或处于某个区间内的相对可能性;而似然函数则是固定了观测值后,关于参数的函数,它关注的是在观测到的数据下,模型参数取不同值的合理性。

似然函数的一个典型应用是在最大似然估计(Maximum Likelihood Estimation, MLE)中,通过寻找使似然函数达到最大值的参数估计值,以此来确定数据生成过程最有可能的参数设置。简单来说,最大似然估计选择那个能使观测数据看起来最"自然"或"最可能"的参数值。

相关推荐
TomcatLikeYou8 小时前
概率论的事件类型分类
概率论
佚名ano2 天前
阻尼Newton方法-数值最优化方法-课程学习笔记-5
笔记·学习·概率论
A Runner for leave4 天前
概率论和数理统计知识点汇总——第二章随机变量的分布与数字特征
概率论
jun7788954 天前
正态分布密度函数的基本概念
概率论
孤单网愈云5 天前
11.13机器学习_贝叶斯和决策树
决策树·机器学习·概率论
颹蕭蕭5 天前
均值方差增量计算
算法·均值算法·概率论
阑梦清川5 天前
概率论之常见分布与matlab绘图
开发语言·matlab·概率论
行码棋6 天前
概率论公式整理
概率论
MarkHD8 天前
第十三天 概率论与统计学
概率论
无水先生13 天前
ML 系列赛: 第 22 节 — 离散概率分布 (Multinoulli Distribution)
概率论