似然函数与概率密度函数的区别

似然函数(Likelihood function)是统计学中一个核心概念,用于量化观测数据在给定模型参数下的可能性。它是概率论框架在统计推断中的逆向应用。具体来说,如果有一个概率模型,其中参数为θ,而我们观测到了一些数据D,似然函数L(θ|D)定义为在参数θ下观测数据D出现的概率(或者对于离散情况,是概率质量函数;对于连续情况,则是概率密度函数):

L(θ|D) = P(D|θ)

这里,P(D|θ) 表示在参数θ下数据集D的联合概率分布。需要注意的是,似然函数是参数θ的函数,它衡量的是根据观测数据,模型参数θ有多大的合理性或"似然性"。换句话说,似然函数表达了数据给定(固定)时,不同参数值的适应程度。

似然函数与概率密度函数(Probability Density Function, PDF)有密切的关系,实际上两者在数学形式上可能相同,但它们有着不同的解释和用途。概率密度函数是关于随机变量的函数,描述的是在给定参数下,随机变量取某个值或处于某个区间内的相对可能性;而似然函数则是固定了观测值后,关于参数的函数,它关注的是在观测到的数据下,模型参数取不同值的合理性。

似然函数的一个典型应用是在最大似然估计(Maximum Likelihood Estimation, MLE)中,通过寻找使似然函数达到最大值的参数估计值,以此来确定数据生成过程最有可能的参数设置。简单来说,最大似然估计选择那个能使观测数据看起来最"自然"或"最可能"的参数值。

相关推荐
FF-Studio1 小时前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有10 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝11 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo13 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
TomcatLikeYou14 天前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论
phoenix@Capricornus16 天前
期望最大化(EM)算法的推导——Q函数
算法·机器学习·概率论
Algo-hx17 天前
概率论的基本概念:开启不确定性世界的数学之旅
概率论
Algo-hx17 天前
随机变量及其分布:概率论的量化核心
概率论
小钻风336619 天前
概率论几大分布的由来
概率论
猿饵块19 天前
slam--高斯分布
概率论