似然函数与概率密度函数的区别

似然函数(Likelihood function)是统计学中一个核心概念,用于量化观测数据在给定模型参数下的可能性。它是概率论框架在统计推断中的逆向应用。具体来说,如果有一个概率模型,其中参数为θ,而我们观测到了一些数据D,似然函数L(θ|D)定义为在参数θ下观测数据D出现的概率(或者对于离散情况,是概率质量函数;对于连续情况,则是概率密度函数):

L(θ|D) = P(D|θ)

这里,P(D|θ) 表示在参数θ下数据集D的联合概率分布。需要注意的是,似然函数是参数θ的函数,它衡量的是根据观测数据,模型参数θ有多大的合理性或"似然性"。换句话说,似然函数表达了数据给定(固定)时,不同参数值的适应程度。

似然函数与概率密度函数(Probability Density Function, PDF)有密切的关系,实际上两者在数学形式上可能相同,但它们有着不同的解释和用途。概率密度函数是关于随机变量的函数,描述的是在给定参数下,随机变量取某个值或处于某个区间内的相对可能性;而似然函数则是固定了观测值后,关于参数的函数,它关注的是在观测到的数据下,模型参数取不同值的合理性。

似然函数的一个典型应用是在最大似然估计(Maximum Likelihood Estimation, MLE)中,通过寻找使似然函数达到最大值的参数估计值,以此来确定数据生成过程最有可能的参数设置。简单来说,最大似然估计选择那个能使观测数据看起来最"自然"或"最可能"的参数值。

相关推荐
passxgx19 小时前
12.2 协方差矩阵与联合概率
线性代数·矩阵·概率论
szcsun51 天前
机器学习(六)--异常检测、主成分分析
人工智能·机器学习·概率论
AI科技星1 天前
张祥前统一场论 22 个核心公式及常数
服务器·人工智能·线性代数·算法·矩阵·概率论
大江东去浪淘尽千古风流人物1 天前
【SLAM】Hydra-Foundations 层次化空间感知:机器人如何像人类一样理解3D环境
深度学习·算法·3d·机器人·概率论·slam
大江东去浪淘尽千古风流人物2 天前
【pySLAM】pySLAM
人工智能·算法·机器学习·概率论·slam
大江东去浪淘尽千古风流人物2 天前
【VLN】VLN Paradigm Alg:Reinforcement learning 强化学习及其细节(4)
机器人·大模型·概率论·端侧部署·巨身智能
modi0002 天前
通俗理解概率乘法公式:P(AB)=P(A)×P(B∣A)
概率论
AI科技星2 天前
从复平面旋转到三维螺旋:欧拉公式在张祥前统一场论中的几何角色与运动合成
线性代数·算法·机器学习·平面·矩阵·概率论
啵啵鱼爱吃小猫咪5 天前
机械臂能量分析
线性代数·机器学习·概率论
大江东去浪淘尽千古风流人物5 天前
【VLN】VLN仿真与训练三要素 Dataset,Simulators,Benchmarks(2)
深度学习·算法·机器人·概率论·slam