R实验 随机变量及其分布

  • 实验目的:
  1. 掌握常见几种离散性随机变量及其分布在R语言中对应的函数用法;
  2. 掌握常见几种连续性随机变量及其分布在R语言中对应的函数用法;
  3. 掌握统计量的定义及统计三大抽样分布在R语言中对应的函数用法。

实验内容:

(习题4.5)通过对学生成绩的统计,高等数学课程的不及格率为20%。现随机地抽查了学习该课程的20名学生,试计算:(提示:这是一个二项分布,参考例4.7)

(1)有2名或2名以下学生不及格的概率是多少?(提示:累积分布函数pbinom(),答案:0.2061)

p1<-pbinom(2,size = 20,prob = 0.2)

p1

(2)有4名学生不及格的概率是多少?(提示:概率密度函数dbinom(),答案:0.2182)

p2<-dbinom(4,size = 20,prob = 0.2)

p2

(3)超过3名学生不及格的概率是多少?(提示:累积分布函数pbinom(),答案:0.5886)

p3<-pbinom(3,size = 20,prob = 0.2)

p4<-1 - p3

p4

(习题4.14)设某城市男子的身高服从均值为168cm,标准差为6cm的正态分布。求:

(1)该市男子身高在170cm以上的概率;(提示:累积分布函数pnorm(),答案:0.3694)

p<-pnorm(170,mean = 168,6)

p1<-1-p

p1

(2)为了使99%以上的男子上公共汽车不至于在车门上沿碰头,当地的公共汽车门框应设计多高?(提示:即求身高为哪个值以下的概率超过0.99,亦即:求k的值,使得P{X≤k}≥.0.99。显然题目是求分位数k,需要用到分位数函数qnorm()。注意到在R语言中,分位数函数默认是下分位数,大家可以看一下,R语言中下分位数函数中有一个参数lower.tail=TRUE,这个参数就是表示下分位数,默认值为TRUE。可参考例4.14。答案:181.9581)

p<-pnorm(170,mean = 168,6)

p1<-1-p

p1

按照参考代码,在一个图中绘制如下图所示的三个正态分布的概率密度函数曲线。要求(第4-7题要求与此类似,不再重复说明):

(1)生成图形后,点击RStudio右下角区域中的"Plot"标签下的"Export"按钮,在弹出的菜单中选择"Save as Image...",保存为PNG格式。然后将此PNG图片插入到此文档中,替换掉原来的样例图。

(2)删除参考代码截图,并粘贴代码文字到此文档中(不是截图)。

(3)对其中的一些参数,可以修改其值或者注释掉该参数,看看生成的图形有什么变化,从而加深理解这些参数的意义。

参考代码:

x <- seq(-4,4,length.out =1000)

y1 <- dnorm(x)

y2 <- dnorm(x,mean = 2,sd = 0.5)

y3 <-dnorm(x,mean = 0,sd = 0.5)

plot(

  x,

  y1,

  type = "l",

  lty =4,

  col ="green3",

  lwd = 2,

  xlim = c(-3,4),

  ylim = c(0,0.8),

  xlab = "x",

  ylab = "density",

  xaxt = "n",

  yaxt = "n",



)



lines(

    x,

    y2,

    lty = 5,

    col = "red"

)

lines(

    x,

    y3,

    lty = 1,

    lwd = 2,

    col = "blue"

)

axis(side = 1,at = seq(-3,4,by = 1))

axis(side = 2,at = seq(0,0.8,by = 0.2))

abline(v = 0)

abline(v = 2)

abline(h = max(y1),lty = 3)

legend(

  "topleft",

  inset = 0.02,

  title = "normal distribution",

  c("μ=0,σ=0.5","μ=2,σ=0.5","μ=0,σ=1"),

  cex = 0.8,

  lty = c(1,5,4),

  lwd = 2,

  col = c("blue","red","green3")



  )

在一个图中,绘制第3题中三个正态分布函数的累积分布函数曲线。(注意为了让曲线完整显示,纵轴的范围需要调整为0到1之间,同时将纵坐标的标签改为CDF,即累积分布函数(Cumulative Distribution Function))

替换以上样例图,并粘贴代码文字于下(非截图)

代码:

x <- seq(-4,4,length.out =1000)

y1 <- pnorm(x)

y2 <- pnorm(x,mean = 2,sd = 0.5)

y3 <-pnorm(x,mean = 0,sd = 0.5)

plot(

  x,

  y1,

  type = "l",

  lty =4,

  col ="green",

  lwd = 2,

  xlim = c(-4,4),

  ylim = c(0,1),

  xlab = "x",

  ylab = "density",

  xaxt = "n",

  yaxt = "n",



)



lines(

    x,

    y2,

    lty = 5,

    col = "red"

)

lines(

    x,

    y3,

    lty = 1,

    lwd = 2,

    col = "blue"

)

axis(side = 1,at = seq(-4,4,by = 2))

axis(side = 2,at = seq(0,1,by = 0.2))

abline(v = 0)

abline(v = 2)

#abline(h = max(y1),lty = 3)



legend(

  "topleft",

  inset = 0.02,

  title = "累积密度函数曲线",

  c("μ=0,σ=0.5","μ=2,σ=0.5","μ=0,σ=1"),

  cex = 0.8,

  lty = c(1,5,4),

  lwd = 2,

  col = c("blue","red","green3")



  )

模仿第3题,绘制下图所示的三个c2分布的概率密度函数曲线。(注意坐标轴刻度、图例等的变化)

替换以上样例图,并粘贴代码文字于下(非截图)

代码:

x <- seq(0,15, length.out = 1000)

y1 <- dchisq(x, df = 1)

y2 <- dchisq(x, df = 4)

y3 <- dchisq(x, df = 10)



plot(

  x,

  y1,

  type = "l",

  lty = 4,

  col = "green3",

  lwd = 2,

  xlim = c(0, 15),

  ylim = c(0.00, 0.30),

  xlab = "x",

  ylab = "density",

  xaxt = "n",

  yaxt = "n"

)



lines(

  x,

  y2,

  lty = 5,

  col = "red"

)



lines(

  x,

  y3,

  lty = 1,

  lwd = 2,

  col = "blue"

)



axis(side = 1, at = seq(0, 15, by = 5))

axis(side = 2, at = seq(0, 0.30, by = 0.05))

#abline(v = 0)

#abline(v = 2)

#abline(h = max(y1), lty = 3)



legend(

  "topright",

  inset = 0.02,

  title = "chi-square distribution",

  c("n = 10", "n = 4", "n = 1"),

  cex = 0.8,

  lty = c(1, 5, 4),

  lwd = 2,

  col = c("blue", "red", "green3")

)

模仿第3题,绘制下图所示的三个t分布的概率密度函数曲线。(注意坐标轴刻度、图例等的变化)

替换以上样例图,并粘贴代码文字于下(非截图)

代码:

x <- seq(0,15, length.out = 1000)

y1 <- dchisq(x, df = 1)

y2 <- dchisq(x, df = 4)

y3 <- dchisq(x, df = 10)



plot(

  x,

  y1,

  type = "l",

  lty = 4,

  col = "green3",

  lwd = 2,

  xlim = c(0, 15),

  ylim = c(0.00, 0.30),

  xlab = "x",

  ylab = "density",

  xaxt = "n",

  yaxt = "n"

)



lines(

  x,

  y2,

  lty = 5,

  col = "red"

)



lines(

  x,

  y3,

  lty = 1,

  lwd = 2,

  col = "blue"

)



axis(side = 1, at = seq(0, 15, by = 5))

axis(side = 2, at = seq(0, 0.30, by = 0.05))

#abline(v = 0)

#abline(v = 2)

#abline(h = max(y1), lty = 3)



legend(

  "topright",

  inset = 0.02,

  title = "chi-square distribution",

  c("n = 10", "n = 4", "n = 1"),

  cex = 0.8,

  lty = c(1, 5, 4),

  lwd = 2,

  col = c("blue", "red", "green3")

)

模仿第3题,绘制下图所示的三个F分布的概率密度函数曲线。(注意坐标轴刻度、图例等的变化。图例中字符的下标不做要求)

替换以上样例图,并粘贴代码文字于下(非截图)

代码:

x <- seq(0,4, length.out = 1000)

y1 <- df(x,3,15)

y2 <- df(x,7,15)

y3 <- df(x,15,15)



plot(

  x,

  y1,

  type = "l",

  lty = 4,

  col = "green3",

  lwd = 2,

  xlim = c(0, 4),

  ylim = c(0.00, 1.0),

  xlab = "x",

  ylab = "density",

  xaxt = "n",

  yaxt = "n"

)



lines(

  x,

  y2,

  lty = 5,

  col = "red"

)



lines(

  x,

  y3,

  lty = 1,

  lwd = 2,

  col = "blue"

)



axis(side = 1, at = seq(0, 4, by = 1))

axis(side = 2, at = seq(0, 0.8, by = 0.2))

#abline(v = 0)

#abline(h = max(y1), lty = 3)



legend(

  "topright",

  inset = 0.02,

  title = "F distribution",

  c("n1=3,n2=15", "n1=7,n2=15","n1=15,n2=15"),

  cex = 0.8,

  lty = c(1, 5, 4),

  lwd = 2,

  col = c("green3", "red", "blue")

)

思考:

常见离散型随机变量的分布有哪些?

伯努利分布、二项分布、泊松分布、几何分布、超几何分布

常见连续型随机变量的分布有哪些?

正态分布、指数分布、均匀分布、伽马分布、卡方分布、t分布、F分布

二项分布适用于__有__放回的抽样,超几何分布适用于__无__放回的抽样。(填"有"或"无")

描述某一特定时间段内或空间段内事件发生次数的随机变量,通常服从什么分布?

泊松分布

描述两个事件间隔时间长度的随机变量,通常服从什么分布?

指数分布

统计量是样本的函数,且不包含总体的未知参数,它是随机变量吗?

统计量是随机变量

常用的抽样方法有两大类:概率型抽样方法和非概率抽样方法。它们各自又含有哪些具体的方法?

概率型抽样方法包括简单随机抽样、分层抽样、整群抽样、多阶段抽样等;

非概率抽样方法包括方便抽样、判断抽样、整齐抽样、比例抽样等。

相关推荐
2302_796984741 天前
概率论基础知识点公式汇总
概率论
项目申报小狂人1 天前
广义正态分布优化算法(GNDO)Generalized Normal Distribution Optimization
算法·概率论
2302_796984741 天前
概率论基础
概率论
感谢地心引力1 天前
【数据分析】层次贝叶斯
机器学习·数据分析·概率论
Mount2562 天前
【数理统计】极限定理及抽样分布
概率论
勤劳的进取家2 天前
多维高斯分布
人工智能·机器学习·概率论
公众号Codewar原创作者2 天前
R机器学习:朴素贝叶斯算法的理解与实操
人工智能·机器学习·概率论
orion-orion2 天前
概率论沉思录:初等假设检验
人工智能·概率论·科学哲学
Mount2562 天前
【数理统计】参数估计
概率论
Trouvaille ~5 天前
【机器学习】解构概率,重构世界:贝叶斯定理与智能世界的暗语
人工智能·python·深度学习·神经网络·机器学习·ai·概率论