【Text2SQL 论文】DIN-SQL:分解任务 + 自我纠正 + in-context 让 LLM 完成 Text2SQL

论文:DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction

⭐⭐⭐⭐

NeurIPS 2023, arXiv:2304.11015

Code: Few-shot-NL2SQL-with-prompting | GitHub

文章目录

    • 一、论文速读
      • [1.1 Schema Linking Module](#1.1 Schema Linking Module)
      • [1.2 Classification & Decomposition Module](#1.2 Classification & Decomposition Module)
      • [1.3 SQL Generation Module](#1.3 SQL Generation Module)
        • [1.3.1 EASY 类型](#1.3.1 EASY 类型)
        • [1.3.2 NON-NESTED 类型](#1.3.2 NON-NESTED 类型)
        • [1.3.3 NESTED 类型](#1.3.3 NESTED 类型)
      • [1.4 Self-correction Module](#1.4 Self-correction Module)
    • [二、Error cases 分析](#二、Error cases 分析)
    • 三、总结

一、论文速读

这篇论文通过对 LLM 做 prompt 来实现 Text2SQL,过程中通过 prompt 让 LLM 分解任务来降低难度,每个子任务通过 in-context learning 让 LLM 来完成,并在完成 SQL 生成后,通过 self-correction 来检查和纠正可能有错误的 SQL。最终,在执行精确度指标上超越了现有的 SOTA 模型。

生成 SQL 被分成四个阶段:

  1. Schema Linking:输入 NL query 和 DB schema,找出与 query 相关的 tables、columns 以及不同表之间的外键关系
  2. Classification & Decomposition:将 query 分成了三种不同的难度:EASY、NON-NESTED、NESTED
  3. SQL Generation:根据不同类型的 query,按照不同的策略来生成对应的 SQL
  4. Self-correction:通过 prompt 来让 LLM 检查和纠正可能错误的 SQL

1.1 Schema Linking Module

这个 module 输入 NL query 和 DB 的 schema 信息,输出的是将 query 链接到 DB 中的一些信息,具体来说输出就是:

  1. table 和 columns 的名称:找到 query 中涉及到的 DB 的 table 和 columns 的名称
  2. 条件值:从查询中提取出用于条件过滤的值,比如在查询"Find the departments with a budget greater than 500"中,需要提取出条件值"500"。
  3. 外键关系的确定:如果查询涉及到多个表,需要确定它们之间的关系,如通过外键连接。

下面是使用 in-context learning + CoT 来让 LLM 做 schema-linking 的示例:

demostration 的一个示例如下:

plain 复制代码
Table advisor, columns = [*,s_ID,i_ID]
Table classroom, columns = [*,building,room_number,capacity]
Table course, columns = [*,course_id,title,dept_name,credits]
Table department, columns = [*,dept_name,building,budget]
Table instructor, columns = [*,ID,name,dept_name,salary]
Table prereq, columns = [*,course_id,prereq_id]
Table section, columns = [*,course_id,sec_id,semester,year,building,room_number,time_slot_id]
Table student, columns = [*,ID,name,dept_name,tot_cred]
Table takes, columns = [*,ID,course_id,sec_id,semester,year,grade]
Table teaches, columns = [*,ID,course_id,sec_id,semester,year]
Table time_slot, columns = [*,time_slot_id,day,start_hr,start_min,end_hr,end_min]
Foreign_keys = [course.dept_name = department.dept_name,instructor.dept_name = department.dept_name,section.building = classroom.building,section.room_number = classroom.room_number,section.course_id = course.course_id,teaches.ID = instructor.ID,teaches.course_id = section.course_id,teaches.sec_id = section.sec_id,teaches.semester = section.semester,teaches.year = section.year,student.dept_name = department.dept_name,takes.ID = student.ID,takes.course_id = section.course_id,takes.sec_id = section.sec_id,takes.semester = section.semester,takes.year = section.year,advisor.s_ID = student.ID,advisor.i_ID = instructor.ID,prereq.prereq_id = course.course_id,prereq.course_id = course.course_id]
Q: "Find the buildings which have rooms with capacity more than 50."
A: Let's think step by step. In the question "Find the buildings which have rooms with capacity more than 50.", we are asked:
"the buildings which have rooms" so we need column = [classroom.capacity]
"rooms with capacity" so we need column = [classroom.building]
Based on the columns and tables, we need these Foreign_keys = [].
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = [50]. So the Schema_links are:
Schema_links: [classroom.building,classroom.capacity,50]

如下面代码所示,schema linking 的结果就是从 GPT 的响应中解析出 Schema_links: 这个字符串后面的内容:

1.2 Classification & Decomposition Module

这一步将 query 分成三种不同的复杂度的类:

  • EASY:没有 JOIN 和 NESTING 的单表查询
  • NON-NESTED:需要 JOIN 但不需要子查询的查询
  • NESTED:可以包含 JOIN、sub-query 和 set opr

下面是一个该 module 的示例:

这部分代码如下:

1.3 SQL Generation Module

这一个 module 根据 query 的复杂度类型,使用不同的策略来生成 SQL。

1.3.1 EASY 类型

对于 EASY 类型的 question,不需要中间步骤,只需要少量提示就足够了,下面是一个 exemplar:

plain 复制代码
Q: "Find the buildings which have rooms with capacity more than 50."
Schema_links: [classroom.building,classroom.capacity,50]
SQL: SELECT DISTINCT building FROM classroom WHERE capacity  >  50

即要求 LLM 根据 question 和 schema links 输出 SQL。

1.3.2 NON-NESTED 类型

对于 NON-NESTED 类型的 question,启发 LLM 去思考从而生成 SQL,下面是一个 exemplar:

plain 复制代码
Q: "Find the total budgets of the Marketing or Finance department."
Schema_links: [department.budget,department.dept_name,Marketing,Finance]
A: Let's think step by step. For creating the SQL for the given question, we need to join these tables = []. First, create an intermediate representation, then use it to construct the SQL query.
Intermediate_representation: select sum(department.budget) from department  where  department.dept_name = \"Marketing\"  or  department.dept_name = \"Finance\"
SQL: SELECT sum(budget) FROM department WHERE dept_name  =  'Marketing' OR dept_name  =  'Finance'

也就是输入 question 和 schema links,然后加一句 Let's think step by step 启发 LLM 思考,从而得到 SQL。

1.3.3 NESTED 类型

在 "Classification & Decomposition Module" 模块中,除了为其复杂度分类,还会为 NESTED 类型的 user question 生成 sub-question,如下图:

然后,这里的 sub-questions 会被传入 SQL Generation Module 的 prompt 中用于解决 NESTED 类型的 SQL 生成。下面是一个 exemplar:

plain 复制代码
Q: "Find the title of courses that have two prerequisites?"
Schema_links: [course.title,course.course_id = prereq.course_id]
A: Let's think step by step. "Find the title of courses that have two prerequisites?" can be solved by knowing the answer to the following sub-question "What are the titles for courses with two prerequisites?".
The SQL query for the sub-question "What are the titles for courses with two prerequisites?" is SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course_id  =  T2.course_id GROUP BY T2.course_id HAVING count(*)  =  2
So, the answer to the question "Find the title of courses that have two prerequisites?" is =
Intermediate_representation: select course.title from course  where  count ( prereq.* )  = 2  group by prereq.course_id
SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course_id  =  T2.course_id GROUP BY T2.course_id HAVING count(*)  =  2

exemplar 的 prompt 的组成如下:

可以看到,这就是输入 question、sub-questions、schema links 来生成 SQL。

1.4 Self-correction Module

这一模块的目的是通过 prompt 让 LLM 来检查和纠正生成的 SQL 中可能的错误。这里的 prompt 如下:

这里的 prompt 让 LLM 多关注自己在生成 SQL 时容易犯的错。

二、Error cases 分析

论文对 error cases 做了分析,总结了如下 LLM 容易出的错:

  • Schema linking:这类是犯错最多的情况,指的是 model 错误地识别出 question 中提到的 column names、table names 或者 entities。
  • JOIN:第二大类情况,指的是 model 不能识别出所有需要的 tables 以及正确地将这些 tables 连接起来的外键。
  • GROUP BY:在生成 GROUP BY 子句时,可能会遗漏或者选错列
  • Queries with nesting and set operations:模型不能识别出 nested structure 或者不能检测出正确的 nesting 或 set 操作
  • Invalid SQL:一部分 SQL 有语法错误且不能执行
  • Miscellaneous:还有其他乱七八糟的原因,比如缺少 predicate、缺少或冗余 DISTINCT、DESC 等关键字

这些容易犯的错,都会在 self-correction module 被多关注来检查和纠正。

三、总结

本论文设计的 prompt 以及思路让 LLM 在解决 Text2SQL 任务上有了不错的表现,产生了与最先进的微调方法相当甚至更优的结果。

但是,本文的思路需要多轮与 LLM 交互,从而产生了巨大的花费和延迟,论文给出,在使用 GPT4 响应 Spider 数据集中 question 时表现出大约 60s 的延迟。

相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习