基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

第一步:准备数据

17种猴子动物数据:

复制代码
self.class_indict = ["白头卷尾猴", "弥猴", "山魈", "松鼠猴", "叶猴", "银色绒猴", "印度乌叶猴", "疣猴", "侏绒","白秃猴", "赤猴", "滇金丝猴", "狒狒", "黑色吼猴", "黑叶猴", "金丝猴", "懒猴"],总共有1800张图片,每个文件夹单独放一种数据

第二步:搭建模型

本文选择一个ShufflenetV2网络,其原理介绍如下:

shufflenet v2是旷视提出的shufflenet的升级版本,并被ECCV2018收录。论文说在同等复杂度下,shufflenet v2比shufflenet和mobilenetv2更准确。shufflenet v2是基于四条准则对shufflenet v1进行改进而得到的,这四条准则如下:

(G1)同等通道大小最小化内存访问量 对于轻量级CNN网络,常采用深度可分割卷积(depthwise separable convolutions),其中点卷积( pointwise convolution)即1x1卷积复杂度最大。这里假定输入和输出特征的通道数分别为C1和C2,经证明仅当C1=C2时,内存使用量(MAC)取最小值,这个理论分析也通过实验得到证实。更详细的证明见参考【1】

(G2)过量使用组卷积会增加MAC 组卷积(group convolution)是常用的设计组件,因为它可以减少复杂度却不损失模型容量。但是这里发现,分组过多会增加MAC。更详细的证明见参考【1】

(G3)网络碎片化会降低并行度 一些网络如Inception,以及Auto ML自动产生的网络NASNET-A,它们倾向于采用"多路"结构,即存在一个lock中很多不同的小卷积或者pooling,这很容易造成网络碎片化,减低模型的并行度,相应速度会慢,这也可以通过实验得到证明。

(G4)不能忽略元素级操作 对于元素级(element-wise operators)比如ReLU和Add,虽然它们的FLOPs较小,但是却需要较大的MAC。这里实验发现如果将ResNet中残差单元中的ReLU和shortcut移除的话,速度有20%的提升。

根据前面的4条准则,作者分析了ShuffleNet v1设计的不足,并在此基础上改进得到了ShuffleNetv2,两者模块上的对比下图所示

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)训练代码:

python 复制代码
import os
import math
import argparse

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_scheduler

from model import shufflenet_v2_x1_0
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluate


def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    print(args)
    print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
    tb_writer = SummaryWriter()
    if os.path.exists("./weights") is False:
        os.makedirs("./weights")

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    # 如果存在预训练权重则载入
    model = shufflenet_v2_x1_0(num_classes=args.num_classes).to(device)
    if args.weights != "":
        if os.path.exists(args.weights):
            weights_dict = torch.load(args.weights, map_location=device)
            load_weights_dict = {k: v for k, v in weights_dict.items()
                                 if model.state_dict()[k].numel() == v.numel()}
            print(model.load_state_dict(load_weights_dict, strict=False))
        else:
            raise FileNotFoundError("not found weights file: {}".format(args.weights))

    # 是否冻结权重
    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除最后的全连接层外,其他权重全部冻结
            if "fc" not in name:
                para.requires_grad_(False)

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=4E-5)
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    for epoch in range(args.epochs):
        # train
        mean_loss = train_one_epoch(model=model,
                                    optimizer=optimizer,
                                    data_loader=train_loader,
                                    device=device,
                                    epoch=epoch)

        scheduler.step()

        # validate
        acc = evaluate(model=model,
                       data_loader=val_loader,
                       device=device)

        print("[epoch {}] accuracy: {}".format(epoch, round(acc, 3)))
        tags = ["loss", "accuracy", "learning_rate"]
        tb_writer.add_scalar(tags[0], mean_loss, epoch)
        tb_writer.add_scalar(tags[1], acc, epoch)
        tb_writer.add_scalar(tags[2], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=17)
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=4)
    parser.add_argument('--lr', type=float, default=0.01)
    parser.add_argument('--lrf', type=float, default=0.1)

    # 数据集所在根目录
    # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,
                        default=r"G:\demo\data\monkeys\training")

    # shufflenetv2_x1.0 官方权重下载地址
    # https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth
    parser.add_argument('--weights', type=str, default='./shufflenetv2_x1-5666bf0f80.pth',
                        help='initial weights path')
    parser.add_argument('--freeze-layers', type=bool, default=False)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

第四步:统计正确率

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码的下载路径(新窗口打开链接): 基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

有问题可以私信或者留言,有问必答

相关推荐
m0_743106461 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106461 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
AI浩5 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
IE066 小时前
深度学习系列75:sql大模型工具vanna
深度学习
不惑_6 小时前
深度学习 · 手撕 DeepLearning4J ,用Java实现手写数字识别 (附UI效果展示)
java·深度学习·ui
CM莫问7 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
余炜yw8 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习
weixin_307779138 小时前
PyTorch基本功能与实现代码
人工智能·pytorch
ARM+FPGA+AI工业主板定制专家8 小时前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
weixin_307779139 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python