YOLO-Worldv2两分钟快速部署

本次部署使用的框架基于ultralytics, 并且已经集成最新版本的YOLOv8框架:

一键环境配置

bash 复制代码
pip install ultralytics

基础使用

  • 训练
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8x-worldv2.pt')
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model('path/to/bus.jpg')
  • 推理
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8s-worldv2.pt')
results = model.predict('path/to/image.jpg')
results[0].show()
  • 自定义标签
    • 我们定义了保温杯,马克杯,纸杯,抽纸,笔记本,屏幕等标签。均不被包含在COCO类别定义中。
python 复制代码
model = YOLOWorld('yolov8s-worldv2.pt')
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")
  • 导出onnx
python 复制代码
model = YOLO('cup_mug_world.pt')
model.export(format="onnx", opset=11)

实时推理

简单修改代码,使得opencv调用网络摄像头并介入yolo-world。代码如下:

python 复制代码
from ultralytics import YOLOWorld
import cv2
import numpy as np

model = YOLOWorld('yolov8x-worldv2.pt') 
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")


capture = cv2.VideoCapture(2)

# while True:
ret, frame = capture.read()
# cv2.imshow("result", frame)
# cv2.waitKey(0)

while True:
    ret, frame = capture.read()
    results = model.predict(np.array(frame))
    cv2.imshow("result", results[0].plot(False))
    cv2.waitKey(1)

具体效果如下。从图中我们可以看到,yolo-world确实可以扩展类别到一些细分、甚至是类似的其他类别。但是存在类别识别错误,以及同物体重识别的情况。

相关推荐
沃达德软件2 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
雪碧聊技术5 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
AI大模型学徒6 小时前
大模型应用开发(四)_调用大模型分析图片
人工智能·深度学习·ai·大模型·deepseek
java1234_小锋6 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 切割车牌矩阵获取车牌字符
python·深度学习·cnn·车牌识别
陈文锦丫6 小时前
Boundary Difference Over Union Loss For Medical Image Segmentation
深度学习
a1111111111ss6 小时前
BiFPN
yolo
青瓷程序设计6 小时前
海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
~~李木子~~6 小时前
中文社交媒体情感分析实战:基于B站评论的机器学习与深度学习对比
深度学习·机器学习·媒体
ghie90906 小时前
线性三角波连续调频毫米波雷达目标识别
人工智能·算法·计算机视觉