YOLO-Worldv2两分钟快速部署

本次部署使用的框架基于ultralytics, 并且已经集成最新版本的YOLOv8框架:

一键环境配置

bash 复制代码
pip install ultralytics

基础使用

  • 训练
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8x-worldv2.pt')
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model('path/to/bus.jpg')
  • 推理
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8s-worldv2.pt')
results = model.predict('path/to/image.jpg')
results[0].show()
  • 自定义标签
    • 我们定义了保温杯,马克杯,纸杯,抽纸,笔记本,屏幕等标签。均不被包含在COCO类别定义中。
python 复制代码
model = YOLOWorld('yolov8s-worldv2.pt')
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")
  • 导出onnx
python 复制代码
model = YOLO('cup_mug_world.pt')
model.export(format="onnx", opset=11)

实时推理

简单修改代码,使得opencv调用网络摄像头并介入yolo-world。代码如下:

python 复制代码
from ultralytics import YOLOWorld
import cv2
import numpy as np

model = YOLOWorld('yolov8x-worldv2.pt') 
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")


capture = cv2.VideoCapture(2)

# while True:
ret, frame = capture.read()
# cv2.imshow("result", frame)
# cv2.waitKey(0)

while True:
    ret, frame = capture.read()
    results = model.predict(np.array(frame))
    cv2.imshow("result", results[0].plot(False))
    cv2.waitKey(1)

具体效果如下。从图中我们可以看到,yolo-world确实可以扩展类别到一些细分、甚至是类似的其他类别。但是存在类别识别错误,以及同物体重识别的情况。

相关推荐
Coding茶水间6 小时前
基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Angelina_Jolie7 小时前
基于 Retinex 的 TempRetinex:适用于不同光照条件下低光视频的无监督增强方法
计算机视觉·音视频
翔云 OCR API7 小时前
承兑汇票识别接口技术解析与应用实践
开发语言·人工智能·python·计算机视觉·ocr
Niuguangshuo8 小时前
自编码器与变分自编码器:【2】自编码器的局限性
pytorch·深度学习·机器学习
haiyu_y8 小时前
Day 46 TensorBoard 使用介绍
人工智能·深度学习·神经网络
百***07458 小时前
GPT-Image-1.5 极速接入全流程及关键要点
人工智能·gpt·计算机视觉
不惑_9 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo9 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
人工智能培训10 小时前
DNN案例一步步构建深层神经网络(3)
人工智能·深度学习·神经网络·大模型·dnn·具身智能·智能体
Doctor_Strange_DML10 小时前
一个简单有效的数据增强技术:data3
人工智能·计算机视觉