YOLO-Worldv2两分钟快速部署

本次部署使用的框架基于ultralytics, 并且已经集成最新版本的YOLOv8框架:

一键环境配置

bash 复制代码
pip install ultralytics

基础使用

  • 训练
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8x-worldv2.pt')
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model('path/to/bus.jpg')
  • 推理
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8s-worldv2.pt')
results = model.predict('path/to/image.jpg')
results[0].show()
  • 自定义标签
    • 我们定义了保温杯,马克杯,纸杯,抽纸,笔记本,屏幕等标签。均不被包含在COCO类别定义中。
python 复制代码
model = YOLOWorld('yolov8s-worldv2.pt')
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")
  • 导出onnx
python 复制代码
model = YOLO('cup_mug_world.pt')
model.export(format="onnx", opset=11)

实时推理

简单修改代码,使得opencv调用网络摄像头并介入yolo-world。代码如下:

python 复制代码
from ultralytics import YOLOWorld
import cv2
import numpy as np

model = YOLOWorld('yolov8x-worldv2.pt') 
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")


capture = cv2.VideoCapture(2)

# while True:
ret, frame = capture.read()
# cv2.imshow("result", frame)
# cv2.waitKey(0)

while True:
    ret, frame = capture.read()
    results = model.predict(np.array(frame))
    cv2.imshow("result", results[0].plot(False))
    cv2.waitKey(1)

具体效果如下。从图中我们可以看到,yolo-world确实可以扩展类别到一些细分、甚至是类似的其他类别。但是存在类别识别错误,以及同物体重识别的情况。

相关推荐
CNRio28 分钟前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll33 分钟前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计4 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z4 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
懷淰メ5 小时前
python3GUI--【AI加持】基于PyQt5+YOLOv8+DeepSeek的智能球体检测系统:(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·球体检测
0***145 小时前
React计算机视觉应用
前端·react.js·计算机视觉
阿龙AI日记6 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
xier_ran11 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳200611 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
CV实验室12 小时前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成