YOLO-Worldv2两分钟快速部署

本次部署使用的框架基于ultralytics, 并且已经集成最新版本的YOLOv8框架:

一键环境配置

bash 复制代码
pip install ultralytics

基础使用

  • 训练
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8x-worldv2.pt')
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model('path/to/bus.jpg')
  • 推理
python 复制代码
from ultralytics import YOLOWorld
model = YOLOWorld('yolov8s-worldv2.pt')
results = model.predict('path/to/image.jpg')
results[0].show()
  • 自定义标签
    • 我们定义了保温杯,马克杯,纸杯,抽纸,笔记本,屏幕等标签。均不被包含在COCO类别定义中。
python 复制代码
model = YOLOWorld('yolov8s-worldv2.pt')
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")
  • 导出onnx
python 复制代码
model = YOLO('cup_mug_world.pt')
model.export(format="onnx", opset=11)

实时推理

简单修改代码,使得opencv调用网络摄像头并介入yolo-world。代码如下:

python 复制代码
from ultralytics import YOLOWorld
import cv2
import numpy as np

model = YOLOWorld('yolov8x-worldv2.pt') 
model.set_classes(['Insulated_cup','mug','paper_cup','drawing_paper','laptop', 'screen', 'woman', 'wirless_earphone', 'Shoulder_bag'])
model.save("elephant_camel_world.pt")


capture = cv2.VideoCapture(2)

# while True:
ret, frame = capture.read()
# cv2.imshow("result", frame)
# cv2.waitKey(0)

while True:
    ret, frame = capture.read()
    results = model.predict(np.array(frame))
    cv2.imshow("result", results[0].plot(False))
    cv2.waitKey(1)

具体效果如下。从图中我们可以看到,yolo-world确实可以扩展类别到一些细分、甚至是类似的其他类别。但是存在类别识别错误,以及同物体重识别的情况。

相关推荐
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
苏言の狗6 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
AI莫大猫7 小时前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
paixiaoxin9 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_515202499 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
AI视觉网奇10 小时前
人脸生成3d模型 Era3D
人工智能·计算机视觉
编码小哥10 小时前
opencv中的色彩空间
opencv·计算机视觉
吃个糖糖10 小时前
34 Opencv 自定义角点检测
人工智能·opencv·计算机视觉
KeepThinking!10 小时前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态