DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台

怎么用ModelArts人工智能应用

训练底座

训练案例

盘古矿山模型

Main

下面是快速助手

https://support.huaweicloud.com/qs-modelarts/modelarts_06_0006.html

准备开发环境

在ModelArts控制台的" 开发环境 > Notebook"页面中,创建基于pytorch1.8-cuda10.2-cudnn7-ubuntu18.04镜像,类型为GPU,规格选择Pnt1或Vnt1系列的Notebook,具体操作请参见创建Notebook实例章节。

如果需要使用本地IDE(PyCharm或VS Code)远程连接Notebook,需要开启SSH远程开发。本案例以在线的JupyterLab为例介绍整个过程。

Notebook创建完成后,状态为"运行中"。单击"操作"栏的"打开",进入JupyterLab页面。

打开JupyterLab的Terminal。此处以Terminal为例介绍整个过程。JupyterLab更多操作请参见JupyterLab简介及常用操作。

图1 打开Terminal

Step1 创建算法工程

在JupyterLab的Terminal中,在work目录下执行ma-cli createproject命令创建工程,根据提示输入工程名称,例如:water_meter。然后按回车键选择默认参数(连续按五次回车),并选择跳过资产安装步骤(选择6)。

图2 创建工程

执行以下命令进入工程目录。

cd water_meter

执行以下命令复制项目数据到Notebook中。

python manage.py copy --source {obs_dataset_path} --dest ./data/raw/water_meter_crop

python manage.py copy --source {obs_dataset_path} --dest ./data/raw/water_meter_segmentation

说明:

{obs_dataset_path}路径为Step1 准备数据中下载到OBS中的数据集路径,比如"obs://{OBS桶名称}/water_meter_segmentation"和"obs://{OBS桶名称}/water_meter_crop"

图3 复制数据集到Notebook中

Step2 使用deeplabv3完成水表区域分割任务

执行如下命令安装ivgSegmentation套件。

python manage.py install algorithm ivgSegmentation==1.0.2

图4 ivgSegmentation套件安装成功

如果提示ivgSegmentation版本不正确,可以通过命令python manage.py list algorithm查询版本。

安装ivgSegmentation套件后,在JupyterLab界面左侧的工程目录中进入"./algorithms/ivgSegmentation/config/sample"文件夹中查看目前支持的分割模型,以sample为例(sample默认的算法就是deeplabv3),文件夹中包括config.py(算法外壳配置)和deeplabv3_resnet50_standard-sample_512x1024.py(模型结构)。

图5 进入sample文件夹

表盘分割只需要区分背景和读数区域,因此属于二分类,需要根据项目所需数据集对配置文件进行修改,如下所示:

修改"config.py"文件。

图6 修改sample文件夹下的config.py文件

复制代码
```c
# config.py
alg_cfg = dict(
data_root='data/raw/water_meter_segmentation',   
# 修改为真实路径本地分割数据集路径
```

修改完后按Ctrl+S保存。

修改"deeplabv3_resnet50_standard-sample_512x1024.py"文件。

图7 修改deeplabv3_resnet50_standard-sample_512x1024.py文件

复制代码
# deeplabv3_resnet50_standard-sample_512x1024.py

gpus=[0]
...
data_cfg = dict(
    ...    num_classes=2,  # 修改为2类
    ...    
    ...    train_scale=(512, 512),  # (h, w)#size全部修改为(512, 512)
    ...    train_crop_size=(512, 512),  # (h, w)
    ...    test_scale=(512, 512),  # (h, w)
    ...    infer_scale=(512, 512),  # (h, w)
 )

修改完按Ctrl+S保存。

在water_meter工程目录下,执行如下命令安装deeplabv3预训练模型。

复制代码
python manage.py install model ivgSegmentation:deeplab/deeplabv3_resnet50_cityscapes_512x1024

图8 安装deeplabv3预训练模型

执行如下命令训练分割模型。(推荐使用GPU进行训练)

复制代码
python manage.py run --cfg 

algorithms/ivgSegmentation/config/sample/config.py --gpus 0

图9 分割模型训练结果

训练好的模型会保存在指定位置中,默认为"./output/deeplabv3_resnet50_standard-sample_512x1024/checkpoints/"中。

验证模型效果。

模型训练完成后,可以在验证集上计算模型的指标,首先修改配置文件的模型位置。

修改"config.py"文件,修改完按Ctrl+S保存。

config.py

复制代码
...

alg_cfg = dict(

...

load_from='./output/deeplabv3_resnet50_standard-sample_512x1024/checkpoints/checkpoint_best.pth.tar', # 修改训练模型的路径

...

)

执行如下命令计算模型指标。

python manage.py run --cfg

algorithms/ivgSegmentation/config/sample/config.py --pipeline evaluate

图10 模型指标计算结果

模型推理。

模型推理能够指定某一张图片,并且推理出图片的分割区域,并进行可视化,首先需要指定需要推理的图片路径。

修改"config.py"文件,修改完按Ctrl+S保存。

alg_cfg = dict(

...

img_file='./data/raw/water_meter_segmentation/image/train_10.jpg' # 指定需要推理的图片路径

...

)

执行如下命令推理模型。

python manage.py run --cfg algorithms/ivgSegmentation/config/sample/config.py --pipeline infer

图11 表盘分割模型推理结果

推理输出的图片路径在"./output/deeplabv3_resnet50_standard-sample_512x1024"下。

图12 水表表盘分割结果可视化

执行如下命令导出算法SDK。

python manage.py export --cfg algorithms/ivgSegmentation/config/sample/config.py --is_deploy

算法开发套件支持将模型导出成一个模型SDK,方便进行模型部署等下游任务。SDK导出的路径为"./export/deeplabv3_resnet50_standard-sample_512x1024/Linux_x86_64_GPU_PyTorch_Common_py"

图13 SDK导出路径

图14 SDK导出示意图

Step3 水表读数识别

执行如下命令安装mmocr套件。

相关推荐
aneasystone本尊23 分钟前
学习 Coze Studio 的工作流执行逻辑
人工智能
DashVector25 分钟前
如何通过Java SDK检索Doc
后端·算法·架构
aneasystone本尊31 分钟前
再学 Coze Studio 的智能体执行逻辑
人工智能
xuanwuziyou34 分钟前
LangChain 多任务应用开发
人工智能·langchain
新智元1 小时前
一句话,性能暴涨 49%!马里兰 MIT 等力作:Prompt 才是大模型终极武器
人工智能·openai
猫头虎1 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体Agent快速构建工具:FastbuildAI
人工智能·开源·github·aigc·ai编程·ai写作·ai-native
wha the fuck4041 小时前
攻防世界—unseping(反序列化)
安全·序列化和反序列化
新智元1 小时前
AI 版华尔街之狼!o3-mini 靠「神之押注」狂赚 9 倍,DeepSeek R1 最特立独行
人工智能·openai
天下弈星~1 小时前
GANs生成对抗网络生成手写数字的Pytorch实现
人工智能·pytorch·深度学习·神经网络·生成对抗网络·gans
Onion_992 小时前
学习下Github上的Android CICD吧
android·github