基于三元组一致性学习的单目内窥镜里程计估计

文章目录

  • [TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope](#TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope)

TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope

摘要

单目图像中深度和姿态的估计对于计算机辅助导航至关重要。由于很难获得深度和姿态的真值标注,无监督训练方法在内窥镜场景中具有广阔的前景。然而,内窥镜数据集缺乏足够的视觉变化多样性,图像三元组中也频繁出现外观不一致的问题。

本文提出了一种三元组一致性学习框架(TCL),包括两个模块:几何一致性模块(GC)和外观不一致模块(AiC)。为丰富内窥镜数据集的多样性,GC模块生成合成三元组并通过特定损失函数强制实现几何一致性。为减少图像三元组中的外观不一致,AiC模块引入三元组遮蔽策略来作用于光度损失。
代码地址

方法

图1描述三元组一致性学习框架(TCL)的总体架构,包含两个模块:

  1. 几何一致性模块(GC):
  • 利用透视视图合成技术生成合成三元组
  • 通过深度一致性损失Ldc和姿态一致性损失Lpc来强制实现几何一致性
  1. 外观不一致模块(AiC):
  • 基于翘曲三元组生成三元组掩码
  • 将掩码应用于光度损失Lp,以减少外观不一致的影响

该框架可以轻松嵌入到无监督的结构从运动(SfM)方法中,无需增加额外的模型参数。这种设计旨在提高单目内窥镜里程计估计的精度,特别是在内窥镜数据集缺乏视觉变化和存在外观不一致的情况下。

实验结果




相关推荐
老前端的功夫5 小时前
前端技术选型的理性之道:构建可量化的ROI评估模型
前端·javascript·人工智能·ubuntu·前端框架
koo3645 小时前
pytorch深度学习笔记
pytorch·笔记·深度学习
Mxsoft6195 小时前
我发现区块链数据同步延迟,某次故障溯源卡顿,动态调整共识机制救场!
人工智能
m0_488913015 小时前
小白也能懂!RAG技术让AI告别知识滞后,收藏学习
人工智能·学习·langchain·大模型·ai大模型·rag·大模型学习
帮帮志5 小时前
【AI大模型对话】流式输出和非流式输出的定义和区别
开发语言·人工智能·python·大模型·anaconda
陈奕昆5 小时前
n8n实战营Day1课时2:核心概念拆解+天气提醒工作流实操
开发语言·人工智能·n8n
邹小邹-AI5 小时前
未来是AI客服的天下
人工智能
冴羽6 小时前
Nano Banana Pro 很强,但你要学会写提示词才能为所欲为
人工智能·aigc·mcp
ATMQuant6 小时前
量化指标解码11:挤压动量 - 捕捉低波动后的爆发行情
人工智能·ai·量化交易·vnpy