基于三元组一致性学习的单目内窥镜里程计估计

文章目录

  • [TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope](#TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope)

TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope

摘要

单目图像中深度和姿态的估计对于计算机辅助导航至关重要。由于很难获得深度和姿态的真值标注,无监督训练方法在内窥镜场景中具有广阔的前景。然而,内窥镜数据集缺乏足够的视觉变化多样性,图像三元组中也频繁出现外观不一致的问题。

本文提出了一种三元组一致性学习框架(TCL),包括两个模块:几何一致性模块(GC)和外观不一致模块(AiC)。为丰富内窥镜数据集的多样性,GC模块生成合成三元组并通过特定损失函数强制实现几何一致性。为减少图像三元组中的外观不一致,AiC模块引入三元组遮蔽策略来作用于光度损失。
代码地址

方法

图1描述三元组一致性学习框架(TCL)的总体架构,包含两个模块:

  1. 几何一致性模块(GC):
  • 利用透视视图合成技术生成合成三元组
  • 通过深度一致性损失Ldc和姿态一致性损失Lpc来强制实现几何一致性
  1. 外观不一致模块(AiC):
  • 基于翘曲三元组生成三元组掩码
  • 将掩码应用于光度损失Lp,以减少外观不一致的影响

该框架可以轻松嵌入到无监督的结构从运动(SfM)方法中,无需增加额外的模型参数。这种设计旨在提高单目内窥镜里程计估计的精度,特别是在内窥镜数据集缺乏视觉变化和存在外观不一致的情况下。

实验结果




相关推荐
塔能物联运维3 小时前
隧道照明“智能进化”:PLC 通信 + AI 调光守护夜间通行生命线
大数据·人工智能
瑶光守护者3 小时前
【AI经典论文解读】《Denoising Diffusion Implicit Models(去噪扩散隐式模型)》论文深度解读
人工智能
wdfk_prog3 小时前
[Linux]学习笔记系列 -- [drivers][base]cpu
linux·笔记·学习
wwwzhouhui3 小时前
2026年1月18日-Obsidian + AI,笔记效率提升10倍!一键生成Canvas和小红书风格笔记
人工智能·obsidian·skills
我星期八休息3 小时前
MySQL数据可视化实战指南
数据库·人工智能·mysql·算法·信息可视化
wuk9984 小时前
基于遗传算法优化BP神经网络实现非线性函数拟合
人工智能·深度学习·神经网络
码农三叔4 小时前
(1-3)人形机器人的发展历史、趋势与应用场景:人形机器人关键技术体系总览
人工智能·机器人
Arms2064 小时前
python时区库学习
开发语言·python·学习
白日做梦Q4 小时前
深度学习中的正则化技术全景:从Dropout到权重衰减的优化逻辑
人工智能·深度学习
清铎4 小时前
大模型训练_week3_day15_Llama概念_《穷途末路》
前端·javascript·人工智能·深度学习·自然语言处理·easyui