基于三元组一致性学习的单目内窥镜里程计估计

文章目录

  • [TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope](#TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope)

TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope

摘要

单目图像中深度和姿态的估计对于计算机辅助导航至关重要。由于很难获得深度和姿态的真值标注,无监督训练方法在内窥镜场景中具有广阔的前景。然而,内窥镜数据集缺乏足够的视觉变化多样性,图像三元组中也频繁出现外观不一致的问题。

本文提出了一种三元组一致性学习框架(TCL),包括两个模块:几何一致性模块(GC)和外观不一致模块(AiC)。为丰富内窥镜数据集的多样性,GC模块生成合成三元组并通过特定损失函数强制实现几何一致性。为减少图像三元组中的外观不一致,AiC模块引入三元组遮蔽策略来作用于光度损失。
代码地址

方法

图1描述三元组一致性学习框架(TCL)的总体架构,包含两个模块:

  1. 几何一致性模块(GC):
  • 利用透视视图合成技术生成合成三元组
  • 通过深度一致性损失Ldc和姿态一致性损失Lpc来强制实现几何一致性
  1. 外观不一致模块(AiC):
  • 基于翘曲三元组生成三元组掩码
  • 将掩码应用于光度损失Lp,以减少外观不一致的影响

该框架可以轻松嵌入到无监督的结构从运动(SfM)方法中,无需增加额外的模型参数。这种设计旨在提高单目内窥镜里程计估计的精度,特别是在内窥镜数据集缺乏视觉变化和存在外观不一致的情况下。

实验结果




相关推荐
磊磊落落41 分钟前
编写一个 VS Code 扩展:将 Copilot 支持的大模型通过 REST API 方式暴露出来
人工智能
格林威44 分钟前
多相机拼接:消除重叠区域的6个核心方法,附OpenCV+Halcon实战代码!
人工智能·数码相机·opencv·计算机视觉·机器人·视觉检测·制造
小白量化2 小时前
聚宽策略分享-1年化98国九条后中小板微盘小改
大数据·数据库·人工智能·量化·qmt
张拭心6 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩7 小时前
大模型 MoE,你明白了么?
人工智能·llm
im_AMBER8 小时前
Leetcode 74 K 和数对的最大数目
数据结构·笔记·学习·算法·leetcode
DBA小马哥8 小时前
Oracle迁移实战:如何轻松跨越异构数据库的学习与技术壁垒
数据库·学习·oracle·信创·国产化平替
Blossom.1188 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751288 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技8 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能