基于三元组一致性学习的单目内窥镜里程计估计

文章目录

  • [TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope](#TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope)

TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope

摘要

单目图像中深度和姿态的估计对于计算机辅助导航至关重要。由于很难获得深度和姿态的真值标注,无监督训练方法在内窥镜场景中具有广阔的前景。然而,内窥镜数据集缺乏足够的视觉变化多样性,图像三元组中也频繁出现外观不一致的问题。

本文提出了一种三元组一致性学习框架(TCL),包括两个模块:几何一致性模块(GC)和外观不一致模块(AiC)。为丰富内窥镜数据集的多样性,GC模块生成合成三元组并通过特定损失函数强制实现几何一致性。为减少图像三元组中的外观不一致,AiC模块引入三元组遮蔽策略来作用于光度损失。
代码地址

方法

图1描述三元组一致性学习框架(TCL)的总体架构,包含两个模块:

  1. 几何一致性模块(GC):
  • 利用透视视图合成技术生成合成三元组
  • 通过深度一致性损失Ldc和姿态一致性损失Lpc来强制实现几何一致性
  1. 外观不一致模块(AiC):
  • 基于翘曲三元组生成三元组掩码
  • 将掩码应用于光度损失Lp,以减少外观不一致的影响

该框架可以轻松嵌入到无监督的结构从运动(SfM)方法中,无需增加额外的模型参数。这种设计旨在提高单目内窥镜里程计估计的精度,特别是在内窥镜数据集缺乏视觉变化和存在外观不一致的情况下。

实验结果




相关推荐
min1811234562 小时前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
2013092416272 小时前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao6664552 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
爱喝可乐的老王2 小时前
神经网络的基础:核心是 “搭积木 + 激活信号”
人工智能·深度学习·神经网络
梁辰兴2 小时前
FSD入华将如何改变我国自动驾驶市场格局?
人工智能·科技·机器学习·自动驾驶·特斯拉·fds·梁辰兴
AI营销实验室3 小时前
AI营销破解券商获客难引领2026增长新范式
人工智能·microsoft
njsgcs3 小时前
ppo可以不需要提取特征,直接训练ac吗。ppo不知道自己现在在第几步吗
人工智能·ppo
lixin5565563 小时前
基于深度生成对抗网络的高质量图像生成模型研究与实现
java·人工智能·pytorch·python·深度学习·语言模型
泰迪智能科技013 小时前
泰迪智能科技人工智能综合实验箱功能简介及实训支持内容介绍
人工智能·科技
DS随心转小程序3 小时前
DeepSeek井号解决方法
人工智能·aigc·deepseek·ds随心转