基于三元组一致性学习的单目内窥镜里程计估计

文章目录

  • [TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope](#TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope)

TCL: Triplet Consistent Learning for Odometry Estimation of Monocular Endoscope

摘要

单目图像中深度和姿态的估计对于计算机辅助导航至关重要。由于很难获得深度和姿态的真值标注,无监督训练方法在内窥镜场景中具有广阔的前景。然而,内窥镜数据集缺乏足够的视觉变化多样性,图像三元组中也频繁出现外观不一致的问题。

本文提出了一种三元组一致性学习框架(TCL),包括两个模块:几何一致性模块(GC)和外观不一致模块(AiC)。为丰富内窥镜数据集的多样性,GC模块生成合成三元组并通过特定损失函数强制实现几何一致性。为减少图像三元组中的外观不一致,AiC模块引入三元组遮蔽策略来作用于光度损失。
代码地址

方法

图1描述三元组一致性学习框架(TCL)的总体架构,包含两个模块:

  1. 几何一致性模块(GC):
  • 利用透视视图合成技术生成合成三元组
  • 通过深度一致性损失Ldc和姿态一致性损失Lpc来强制实现几何一致性
  1. 外观不一致模块(AiC):
  • 基于翘曲三元组生成三元组掩码
  • 将掩码应用于光度损失Lp,以减少外观不一致的影响

该框架可以轻松嵌入到无监督的结构从运动(SfM)方法中,无需增加额外的模型参数。这种设计旨在提高单目内窥镜里程计估计的精度,特别是在内窥镜数据集缺乏视觉变化和存在外观不一致的情况下。

实验结果




相关推荐
独处东汉12 分钟前
freertos开发空气检测仪之输入子系统结构体设计
数据结构·人工智能·stm32·单片机·嵌入式硬件·算法
m0_7482299914 分钟前
ThinkPHP快速入门:从零到实战
c语言·开发语言·数据库·学习
乐迪信息15 分钟前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
風清掦19 分钟前
【江科大STM32学习笔记-04】0.96寸OLED显示屏
笔记·stm32·学习
风栖柳白杨22 分钟前
【语音识别】soundfile使用方法
人工智能·语音识别
胡西风_foxww24 分钟前
ObsidianAI_学习一个陌生知识领域_建立学习路径和知识库框架_写一本书
人工智能·笔记·学习·知识库·obsidian·notebooklm·写一本书
Hernon24 分钟前
AI智能体 - 探索与发现 Clawdbot >> Moltbot
大数据·人工智能·ai智能体·ai开发框架
输出的都是我的24 分钟前
科研-工具箱汇总
人工智能
Haooog25 分钟前
AI应用代码生成平台
java·学习·大模型·langchain4j
非凡ghost26 分钟前
ShareX(免费截图录屏软件)
windows·学习·软件需求