Connect cf题解(dfs,bfs,暴力)

Alice lives on a flat planet that can be modeled as a square grid of size n×nn×n, with rows and columns enumerated from 11 to nn. We represent the cell at the intersection of row rr and column cc with ordered pair (r,c)(r,c). Each cell in the grid is either land or water.

转存失败重新上传取消An example planet with n=5n=5. It also appears in the first sample test.

Alice resides in land cell (r1,c1)(r1,c1). She wishes to travel to land cell (r2,c2)(r2,c2). At any moment, she may move to one of the cells adjacent to where she is---in one of the four directions (i.e., up, down, left, or right).

Unfortunately, Alice cannot swim, and there is no viable transportation means other than by foot (i.e., she can walk only on land). As a result, Alice's trip may be impossible.

To help Alice, you plan to create at most one tunnel between some two land cells. The tunnel will allow Alice to freely travel between the two endpoints. Indeed, creating a tunnel is a lot of effort: the cost of creating a tunnel between cells (rs,cs)(rs,cs) and (rt,ct)(rt,ct) is (rs−rt)2+(cs−ct)2(rs−rt)2+(cs−ct)2.

For now, your task is to find the minimum possible cost of creating at most one tunnel so that Alice could travel from (r1,c1)(r1,c1) to (r2,c2)(r2,c2). If no tunnel needs to be created, the cost is 00.

Input

The first line contains one integer nn (1≤n≤501≤n≤50) --- the width of the square grid.

The second line contains two space-separated integers r1r1 and c1c1 (1≤r1,c1≤n1≤r1,c1≤n) --- denoting the cell where Alice resides.

The third line contains two space-separated integers r2r2 and c2c2 (1≤r2,c2≤n1≤r2,c2≤n) --- denoting the cell to which Alice wishes to travel.

Each of the following nn lines contains a string of nn characters. The jj-th character of the ii-th such line (1≤i,j≤n1≤i,j≤n) is 0 if (i,j)(i,j) is land or 1 if (i,j)(i,j) is water.

It is guaranteed that (r1,c1)(r1,c1) and (r2,c2)(r2,c2) are land.

Output

Print an integer that is the minimum possible cost of creating at most one tunnel so that Alice could travel from (r1,c1)(r1,c1) to (r2,c2)(r2,c2).

Examples

input

Copy

复制代码
5
1 1
5 5
00001
11111
00111
00110
00110

output

Copy

复制代码
10

input

Copy

复制代码
3
1 3
3 1
010
101
010

output

Copy

复制代码
8

Note

In the first sample, a tunnel between cells (1,4)(1,4) and (4,5)(4,5) should be created. The cost of doing so is (1−4)2+(4−5)2=10(1−4)2+(4−5)2=10, which is optimal. This way, Alice could walk from (1,1)(1,1) to (1,4)(1,4), use the tunnel from (1,4)(1,4) to (4,5)(4,5), and lastly walk from (4,5)(4,5) to (5,5)(5,5).

In the second sample, clearly a tunnel between cells (1,3)(1,3) and (3,1)(3,1) needs to be created. The cost of doing so is (1−3)2+(3−1)2=8(1−3)2+(3−1)2=8.

思路:

标记起点和终点可以到的位置,用dfs标记找出来,然后暴力所有可能的桥,找到答案

代码:

cpp 复制代码
int lower_bit(int x){
    return x&(-x);
}
bool check(int x){//判断回文数
    int y=x,t=0;
    while(y){
        t=t*10+y%10;
        y/=10;
    }return x==t;
}
bool cmp1(int a,int b){//从大到小
    return a>b;
}
bool cmpp(pair<char,int>a,pair<char,int>b){
    return a.second<b.second;
}
int pai(int x){//全排列
    if(x==0||x==1)return 1;
    return x*pai(x-1)%mod;
}
char t[100][100];//不能用int ,默认一行一个数
int x[2],y[2];
int vis[2][100][100];
int n;
void dfs(int x,int y,int c){
    if(vis[c][x][y])return ;
    vis[c][x][y]=1;
    if(t[x+1][y]=='0'&&x<n)dfs(x+1,y,c);
    if(t[x][y+1]=='0'&&y<n)dfs(x,y+1,c);
    if(t[x-1][y]=='0'&&x>1)dfs(x-1,y,c);
    if(t[x][y-1]=='0'&&y>1)dfs(x,y-1,c);
}
void solve(){//数据量小,涉及暴力的成分,暴力起点和终点等到达的点的最小距离
   cin>>n;
   for(int i=0;i<2;++i)cin>>x[i]>>y[i];
   for(int i=1;i<=n;++i){
    for(int j=1;j<=n;++j){
        cin>>t[i][j];
    }
   }
   for(int i=0;i<2;++i){
    dfs(x[i],y[i],i);//标记起点和终点可以到的位置
   }
   int ans=1e9+100;
   for(int i=1;i<=n;++i){//暴力,
    for(int j=1;j<=n;++j){
        if(vis[0][i][j]){
            for(int x1=1;x1<=n;++x1){
                for(int y1=1;y1<=n;++y1){
                    if(vis[1][x1][y1]){
                        ans=min(ans,(i-x1)*(i-x1)+(j-y1)*(j-y1));
                    }
                }
            }
        }
    }
   }
   cout<<ans<<'\n';
}
相关推荐
CoovallyAIHub20 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub22 分钟前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
lxmyzzs26 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
洋曼巴-young27 分钟前
240. 搜索二维矩阵 II
数据结构·算法·矩阵
楼田莉子2 小时前
C++算法题目分享:二叉搜索树相关的习题
数据结构·c++·学习·算法·leetcode·面试
pusue_the_sun3 小时前
数据结构——栈和队列oj练习
c语言·数据结构·算法··队列
大锦终3 小时前
【算法】模拟专题
c++·算法
Xの哲學3 小时前
Perf使用详解
linux·网络·网络协议·算法·架构
想不明白的过度思考者3 小时前
数据结构(排序篇)——七大排序算法奇幻之旅:从扑克牌到百亿数据的魔法整理术
数据结构·算法·排序算法
小七rrrrr3 小时前
动态规划法 - 53. 最大子数组和
java·算法·动态规划