leetcode hot100 之 最长公共子序列

题目

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

原题链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路

以 dp[i][j] 表示,text1[0:i] 和 text2[0:j] 的最长公共子序列长度。

找转移方程:

当 text[i] == text[j] 时,即两个子字符串末尾的字符相同时,dp[i][j] = dp[i-1][j-1] + 1。

当 text[i] != text[j] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

找边界条件:

当 i=0 或 j=0 时,显然可得 dp[i][0]、dp[0][j] = 0

代码

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
        // if text1[i-1] == text2[j-1], dp[i][j] = dp[i-1][j-1] + 1
        // else, dp[i][j] = max(dp[i][j-1], dp[i-1][j])
        for (int i = 0; i <= m; i++) {
            dp[i][0] = 0;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <=n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
};
相关推荐
雾月5540 分钟前
LeetCode 1292 元素和小于等于阈值的正方形的最大边长
java·数据结构·算法·leetcode·职场和发展
OpenC++1 小时前
【C++QT】Buttons 按钮控件详解
c++·经验分享·qt·leetcode·microsoft
知来者逆2 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
阿让啊2 小时前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
এ᭄画画的北北2 小时前
力扣-160.相交链表
算法·leetcode·链表
爱研究的小陈3 小时前
Day 3:数学基础回顾——线性代数与概率论在AI中的核心作用
算法
渭雨轻尘_学习计算机ing3 小时前
二叉树的最大宽度计算
算法·面试
BB_CC_DD4 小时前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
梁下轻语的秋缘5 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV5 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法