leetcode hot100 之 最长公共子序列

题目

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

原题链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路

以 dp[i][j] 表示,text1[0:i] 和 text2[0:j] 的最长公共子序列长度。

找转移方程:

当 text[i] == text[j] 时,即两个子字符串末尾的字符相同时,dp[i][j] = dp[i-1][j-1] + 1。

当 text[i] != text[j] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

找边界条件:

当 i=0 或 j=0 时,显然可得 dp[i][0]、dp[0][j] = 0

代码

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
        // if text1[i-1] == text2[j-1], dp[i][j] = dp[i-1][j-1] + 1
        // else, dp[i][j] = max(dp[i][j-1], dp[i-1][j])
        for (int i = 0; i <= m; i++) {
            dp[i][0] = 0;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <=n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
};
相关推荐
滴滴答滴答答6 小时前
LeetCode Hot100 之 17 合并区间
算法·leetcode·职场和发展
你怎么知道我是队长6 小时前
C语言---排序算法8---递归快速排序法
c语言·算法·排序算法
007张三丰6 小时前
软件测试专栏(5/20):自动化测试入门指南:从零开始构建你的第一个测试框架
自动化测试·python·算法·压力测试·测试框架
Zachery Pole6 小时前
根据高等代数与数分三计算线性回归中的w
算法·回归·线性回归
得一录7 小时前
星图·全参数调试qwen3.1-B
深度学习·算法·aigc
yyjtx7 小时前
DHU上机打卡D22
算法
plus4s7 小时前
2月14日(76-78题)
c++·算法·图论
pzx_0017 小时前
【论文阅读】Attention Is All You Need
论文阅读·算法
-To be number.wan7 小时前
算法学习日记 |贪心算法
c++·学习·算法·贪心算法
清钟沁桐7 小时前
算法实现
算法