leetcode hot100 之 最长公共子序列

题目

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

原题链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路

以 dp[i][j] 表示,text1[0:i] 和 text2[0:j] 的最长公共子序列长度。

找转移方程:

当 text[i] == text[j] 时,即两个子字符串末尾的字符相同时,dp[i][j] = dp[i-1][j-1] + 1。

当 text[i] != text[j] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

找边界条件:

当 i=0 或 j=0 时,显然可得 dp[i][0]、dp[0][j] = 0

代码

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
        // if text1[i-1] == text2[j-1], dp[i][j] = dp[i-1][j-1] + 1
        // else, dp[i][j] = max(dp[i][j-1], dp[i-1][j])
        for (int i = 0; i <= m; i++) {
            dp[i][0] = 0;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <=n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
};
相关推荐
ZTLJQ5 分钟前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
JohnFF27 分钟前
48. 旋转图像
数据结构·算法·leetcode
bbc12122628 分钟前
AT_abc306_b [ABC306B] Base 2
算法
生锈的键盘36 分钟前
推荐算法实践:movielens数据集
算法
董董灿是个攻城狮37 分钟前
Transformer 通关秘籍9:词向量的数值实际上是特征
算法
林泽毅1 小时前
SwanLab x EasyR1:多模态LLM强化学习后训练组合拳,让模型进化更高效
算法·llm·强化学习
小林熬夜学编程1 小时前
【高并发内存池】第八弹---脱离new的定长内存池与多线程malloc测试
c语言·开发语言·数据结构·c++·算法·哈希算法
刚入门的大一新生1 小时前
归并排序延伸-非递归版本
算法·排序算法
独好紫罗兰1 小时前
洛谷题单3-P1980 [NOIP 2013 普及组] 计数问题-python-流程图重构
开发语言·python·算法
独好紫罗兰1 小时前
洛谷题单3-P1009 [NOIP 1998 普及组] 阶乘之和-python-流程图重构
开发语言·python·算法