leetcode hot100 之 最长公共子序列

题目

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

原题链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路

以 dp[i][j] 表示,text1[0:i] 和 text2[0:j] 的最长公共子序列长度。

找转移方程:

当 text[i] == text[j] 时,即两个子字符串末尾的字符相同时,dp[i][j] = dp[i-1][j-1] + 1。

当 text[i] != text[j] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

找边界条件:

当 i=0 或 j=0 时,显然可得 dp[i][0]、dp[0][j] = 0

代码

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
        // if text1[i-1] == text2[j-1], dp[i][j] = dp[i-1][j-1] + 1
        // else, dp[i][j] = max(dp[i][j-1], dp[i-1][j])
        for (int i = 0; i <= m; i++) {
            dp[i][0] = 0;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <=n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
};
相关推荐
wanzhong23331 天前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
fufu03111 天前
Linux环境下的C语言编程(四十八)
数据结构·算法·排序算法
Yingye Zhu(HPXXZYY)1 天前
Solution to Luogu P6340
算法
小熳芋1 天前
单词搜索- python-dfs&剪枝
算法·深度优先·剪枝
Xの哲學1 天前
Linux SLAB分配器深度解剖
linux·服务器·网络·算法·边缘计算
bu_shuo1 天前
MATLAB中的转置操作及其必要性
开发语言·算法·matlab
高洁011 天前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
爱装代码的小瓶子1 天前
算法【c++】二叉树搜索树转换成排序双向链表
c++·算法·链表
思成Codes1 天前
数据结构:基础线段树——线段树系列(提供模板)
数据结构·算法
虾..1 天前
Linux 简单日志程序
linux·运维·算法