leetcode hot100 之 最长公共子序列

题目

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

原题链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路

以 dp[i][j] 表示,text1[0:i] 和 text2[0:j] 的最长公共子序列长度。

找转移方程:

当 text[i] == text[j] 时,即两个子字符串末尾的字符相同时,dp[i][j] = dp[i-1][j-1] + 1。

当 text[i] != text[j] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

找边界条件:

当 i=0 或 j=0 时,显然可得 dp[i][0]、dp[0][j] = 0

代码

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
        // if text1[i-1] == text2[j-1], dp[i][j] = dp[i-1][j-1] + 1
        // else, dp[i][j] = max(dp[i][j-1], dp[i-1][j])
        for (int i = 0; i <= m; i++) {
            dp[i][0] = 0;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <=n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
};
相关推荐
2501_9412362124 分钟前
C++与Node.js集成
开发语言·c++·算法
云边有个稻草人3 小时前
部分移动(Partial Move)的使用场景:Rust 所有权拆分的精细化实践
开发语言·算法·rust
松涛和鸣5 小时前
11.C 语言学习:递归、宏定义、预处理、汉诺塔、Fibonacci 等
linux·c语言·开发语言·学习·算法·排序算法
2501_941111246 小时前
C++与自动驾驶系统
开发语言·c++·算法
2501_941111697 小时前
C++中的枚举类高级用法
开发语言·c++·算法
jz_ddk7 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
Miraitowa_cheems7 小时前
LeetCode算法日记 - Day 106: 两个字符串的最小ASCII删除和
java·数据结构·算法·leetcode·深度优先
旭编7 小时前
小红的好矩形
c++·算法
小白程序员成长日记7 小时前
2025.11.12 力扣每日一题
算法·leetcode·职场和发展
Alex艾力的IT数字空间7 小时前
设计既保持高性能又兼顾可移植性的跨平台数据结构
数据结构·分布式·算法·微服务·中间件·架构·动态规划