leetcode hot100 之 最长公共子序列

题目

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

原题链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路

以 dp[i][j] 表示,text1[0:i] 和 text2[0:j] 的最长公共子序列长度。

找转移方程:

当 text[i] == text[j] 时,即两个子字符串末尾的字符相同时,dp[i][j] = dp[i-1][j-1] + 1。

当 text[i] != text[j] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

找边界条件:

当 i=0 或 j=0 时,显然可得 dp[i][0]、dp[0][j] = 0

代码

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
        // if text1[i-1] == text2[j-1], dp[i][j] = dp[i-1][j-1] + 1
        // else, dp[i][j] = max(dp[i][j-1], dp[i-1][j])
        for (int i = 0; i <= m; i++) {
            dp[i][0] = 0;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <=n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
};
相关推荐
师太,答应老衲吧2 分钟前
SQL实战训练之,力扣:2020. 无流量的帐户数(递归)
数据库·sql·leetcode
捕鲸叉26 分钟前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer30 分钟前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法
wheeldown1 小时前
【数据结构】选择排序
数据结构·算法·排序算法
观音山保我别报错2 小时前
C语言扫雷小游戏
c语言·开发语言·算法
TangKenny3 小时前
计算网络信号
java·算法·华为
景鹤3 小时前
【算法】递归+深搜:814.二叉树剪枝
算法
iiFrankie3 小时前
SCNU习题 总结与复习
算法
Dola_Pan4 小时前
C++算法和竞赛:哈希算法、动态规划DP算法、贪心算法、博弈算法
c++·算法·哈希算法
小林熬夜学编程5 小时前
【Linux系统编程】第四十一弹---线程深度解析:从地址空间到多线程实践
linux·c语言·开发语言·c++·算法