【动态规划算法题记录】70. 爬楼梯——递归/动态规划

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

题目分析

递归法(超出时间限制)

  1. 递归参数与返回值
    void reversal(int i, int k)
    每次我们处理第i个台阶到第k个台阶之间的可能性。这里我把结果int cnt放在类成员中了,所以直接在函数中进行处理,不用返回。
  2. 递归终止条件
    当我们处理到最上面的台阶了,也就是reversal(n, n)就可以结束当前递归。
  3. 单层递归逻辑
    单层递归中,我们再将区间(i, k)细分下去:因为我们每次只能上一级或两级台阶 ,并且上了台阶之后才能处理更高层的范围,所以在缩小范围时,我们针对的是区间的左边。也就是:
cpp 复制代码
for(int j = 1; j <= (k-i) && j <=2; j++){
            reversal(i+j, k);
        }

其中,j就是我们上台阶的可能性,它的取值要小于等于2 且不能超过区间的大小。

最终的cpp递归代码:

cpp 复制代码
class Solution {
private:
    int cnt;
public:
    void reversal(int i, int k){    // 在第i个台阶到第k个台阶之间做决策
        // 递归终止条件:已经到最上面的台阶,cnt加一并返回
        if(i == k){
            cnt++;
            return;
        }

        // 单层递归:从第i个台阶到第k个台阶的可能性
        // j在这里代表是上几个台阶
        for(int j = 1; j <= (k-i) && j <=2; j++){
            reversal(i+j, k);
        }
    }

    int climbStairs(int n) {
        cnt = 0;
        reversal(0, n);
        return cnt;
    }
};

动态规划

  1. 确定dp数组以及下标的含义
    dp[i]:爬到第i级台阶的方法数量。

  2. 确定递推公式
    dp[i] = dp[i-1] + dp[i-2]

因为我们只有两种上楼梯的方法,也即上一级台阶或两级台阶。试想:

  • 我们上到第i-1级台阶时,共有d[i-1]种方法,再上一级则到达第i级台阶;
  • 我们上到第i-2级台阶时,共有d[i-2]种方法,再上两级则到达第i级台阶;

上到第i级台阶也就两种情况,从第i-1级台阶再上一级,或是从第i-2级台阶再上两级,那么我们上到第i级台阶的方法不就是 dp[i-1] + dp[i-2]。这也说明了每一级台阶的状态是由前面两级台阶决定的。

  1. dp数组初始化
    dp[1] = 1;
    dp[2] = 2;

因为第0级台阶不存在,所以我们不必纠结dp[0]的值到底如何初始化。

  1. 确定遍历顺序

    因为dp[i]是由它的前两个数决定,所以我们只能从前往后去遍历。

  2. 举例推导dp数组

    例如当n=5

    dp[1]=1;

    dp[2]=2;

    dp[3] = dp[2] + dp[1] = 3;

    dp[4] = dp[3] + dp[2] = 5;

    dp[5] = dp[4] + dp[3] = 8;

动态规划的cpp代码:

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if(n < 3) return n;

        // 确定dp数组以及下标含义
        vector<int> dp(n+1); //dp[i]是到达第i阶楼梯的方法总数
        
        // 初始化
        dp[1] = 1;
        dp[2] = 2;
        
        // 推导
        for(int i = 3; i <= n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }

        return dp[n];
    }
};
相关推荐
old_power16 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
Bran_Liu30 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing32 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
Jcqsunny1 小时前
[分治] FBI树
算法·深度优先··分治
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
謓泽2 小时前
【数据结构】二分查找
数据结构·算法
00Allen002 小时前
Java复习第四天
算法·leetcode·职场和发展
攻城狮7号3 小时前
【10.2】队列-设计循环队列
数据结构·c++·算法
_DCG_4 小时前
c++常见设计模式之装饰器模式
c++·设计模式·装饰器模式