英伟达算法岗面试,问的贼专业。。。

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

合集:

《大模型面试宝典》(2024版) 正式发布!
持续火爆!《AIGC 面试宝典》已圈粉无数!


这两天求职群分享了很多大厂的算法岗面试真题(暑期实习基本结束了,校招即将开启)。

这里特别整理了部分英伟达的最新面试题,希望对你有所帮助。

  1. 介绍MoE和变体

  2. 介绍LoRA和变体

  3. LoRA 参数更新机制

  4. MLM和MIM的关系和区别?

  5. Stable Diffusion的技术原理

  6. 解決LLM Hallucination的方法

  7. Occupancy预测的出发点是什么?

  8. 2D图像预训练怎么迁移到3D点云任务

  9. 把Transformer模型训深的问题有哪些?怎么解决

  10. 现在车道线检测的主流的loss是什么?你有哪些想法?

  11. 为什么GAN中经常遇到mode collapse,而Diffusion比较少?

我还特别整理15道Transformer高频面试题求职群里有数百道Transformer题目,还有答案

  1. 介绍Transformer和ViT

  2. 介绍Transformer的QKV

  3. 介绍Layer Normalization

  4. Transformer训练和部署技巧

  5. 介绍Transformer的位置编码

  6. 介绍自注意力机制和数学公式

  7. 介绍Transformer的Encoder模块

  8. 介绍Transformer的Decoder模块

  9. Transformer和Mamba(SSM)的区别

  10. Transformer中的残差结构以及意义

  11. 为什么Transformer适合多模态任务?

  12. Transformer的并行化体现在哪个地方?

  13. 为什么Transformer一般使用LayerNorm?

  14. Transformer为什么使用多头注意力机制?

  15. Transformer训练的Dropout是如何设定的?

精选

相关推荐
AI决策者洞察15 分钟前
Vibe Coding(氛围编程):把代码交给 AI 的瞬间,也交出了未来的维护权——慢慢学AI162
人工智能
德育处主任20 分钟前
终结开发混乱,用 Amazon Q 打造AI助手
人工智能·aigc
铁锚22 分钟前
在MAC环境中安装unsloth
人工智能·python·macos·语言模型
学行库小秘31 分钟前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
小奋斗42 分钟前
深入浅出:JavaScript中 三大异步编程方案以及应用
javascript·面试
_meow_1 小时前
数学建模 15 逻辑回归与随机森林
算法·数学建模·逻辑回归
XIAO·宝1 小时前
机器学习--数据预处理
人工智能·机器学习·数据预处理
cxyxiaokui0011 小时前
别让你的Java对象在内存里躺平!序列化带它看世界
后端·面试
爱喝奶茶的企鹅1 小时前
Ethan独立开发新品速递 | 2025-08-21
人工智能
爱喝奶茶的企鹅1 小时前
Ethan开发者创新项目日报 | 2025-08-21
人工智能