英伟达算法岗面试,问的贼专业。。。

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

合集:

《大模型面试宝典》(2024版) 正式发布!
持续火爆!《AIGC 面试宝典》已圈粉无数!


这两天求职群分享了很多大厂的算法岗面试真题(暑期实习基本结束了,校招即将开启)。

这里特别整理了部分英伟达的最新面试题,希望对你有所帮助。

  1. 介绍MoE和变体

  2. 介绍LoRA和变体

  3. LoRA 参数更新机制

  4. MLM和MIM的关系和区别?

  5. Stable Diffusion的技术原理

  6. 解決LLM Hallucination的方法

  7. Occupancy预测的出发点是什么?

  8. 2D图像预训练怎么迁移到3D点云任务

  9. 把Transformer模型训深的问题有哪些?怎么解决

  10. 现在车道线检测的主流的loss是什么?你有哪些想法?

  11. 为什么GAN中经常遇到mode collapse,而Diffusion比较少?

我还特别整理15道Transformer高频面试题求职群里有数百道Transformer题目,还有答案

  1. 介绍Transformer和ViT

  2. 介绍Transformer的QKV

  3. 介绍Layer Normalization

  4. Transformer训练和部署技巧

  5. 介绍Transformer的位置编码

  6. 介绍自注意力机制和数学公式

  7. 介绍Transformer的Encoder模块

  8. 介绍Transformer的Decoder模块

  9. Transformer和Mamba(SSM)的区别

  10. Transformer中的残差结构以及意义

  11. 为什么Transformer适合多模态任务?

  12. Transformer的并行化体现在哪个地方?

  13. 为什么Transformer一般使用LayerNorm?

  14. Transformer为什么使用多头注意力机制?

  15. Transformer训练的Dropout是如何设定的?

精选

相关推荐
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-1-12)
ai·开源·大模型·github·ai教程
Warren2Lynch3 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale4 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant4 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138344 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
多米Domi0114 小时前
0x3f第33天复习 (16;45-18:00)
数据结构·python·算法·leetcode·链表
soldierluo4 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms14 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑4 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei4 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc