节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。
针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。
合集:
《大模型面试宝典》(2024版) 正式发布!
持续火爆!《AIGC 面试宝典》已圈粉无数!
这两天求职群分享了很多大厂的算法岗面试真题(暑期实习基本结束了,校招即将开启)。
这里特别整理了部分英伟达的最新面试题,希望对你有所帮助。
-
介绍MoE和变体
-
介绍LoRA和变体
-
LoRA 参数更新机制
-
MLM和MIM的关系和区别?
-
Stable Diffusion的技术原理
-
解決LLM Hallucination的方法
-
Occupancy预测的出发点是什么?
-
2D图像预训练怎么迁移到3D点云任务
-
把Transformer模型训深的问题有哪些?怎么解决
-
现在车道线检测的主流的loss是什么?你有哪些想法?
-
为什么GAN中经常遇到mode collapse,而Diffusion比较少?
我还特别整理15道Transformer高频面试题 (求职群里有数百道Transformer题目,还有答案)
-
介绍Transformer和ViT
-
介绍Transformer的QKV
-
介绍Layer Normalization
-
Transformer训练和部署技巧
-
介绍Transformer的位置编码
-
介绍自注意力机制和数学公式
-
介绍Transformer的Encoder模块
-
介绍Transformer的Decoder模块
-
Transformer和Mamba(SSM)的区别
-
Transformer中的残差结构以及意义
-
为什么Transformer适合多模态任务?
-
Transformer的并行化体现在哪个地方?
-
为什么Transformer一般使用LayerNorm?
-
Transformer为什么使用多头注意力机制?
-
Transformer训练的Dropout是如何设定的?
精选
- 轻松构建聊天机器人,大模型 RAG 有了更强大的AI检索器
- 一文搞懂大模型训练加速框架 DeepSpeed 的使用方法!
- 保姆级学习指南:《Pytorch 实战宝典》来了
- MoE 大模型的前世今生
- 从零解读 SAM(Segment Anything Model)
- AI 绘画爆火背后:扩散模型原理及实现
- 从零开始构建和训练生成对抗网络(GAN)模型
- CLIP/LLaVA/LLaVA1.5/VILA 模型全面梳理!
- 从零开始创建一个小规模的稳定扩散模型!
- Stable Diffusion 模型:LDM、SD 1.0, 1.5, 2.0、SDXL、SDXL-Turbo 等
- 文生图模型:AE、VAE、VQ-VAE、VQ-GAN、DALL-E 等 8 模型
- 一文搞懂 BERT(基于Transformer的双向编码器)
- 一文搞懂 GPT(Generative Pre-trained Transformer)
- 一文搞懂 ViT(Vision Transformer)
- 一文搞懂 Transformer
- 一文搞懂 Attention(注意力)机制
- 一文搞懂 Self-Attention 和 Multi-Head Attention
- 一文搞懂 Embedding(嵌入)
- 一文搞懂 Encoder-Decoder(编码器-解码器)