智能体(Agent)实战——从gpts到auto gen

一.GPTs

智能体以大模型作为大脑,同时配备技能,使其能够完成具体的任务。同时,为了应用于垂直领域,我们需要为大模型定义一个角色,并构建知识库。最后,定义完整的流程,使其完成整个任务。以组会汇报的智能体为例,定义如下

1.创建自己的gpt

2.角色定义

该 Agent 是一种智能化助理,专为研究人员和学生设计,用于调研计算机领域顶级会议的论文。它能够自动访问各大顶级会议网站,搜索并下载相关论文,并对论文内容进行整理分析,最终生成易于理解的思维导图。这些思维导图旨在帮助用户快速把握论文的核心内容、研究方法、实验结果和研究意义。

3.任务流程

步骤 1: 搜索顶级会议论文

  • 技能使用#2N GoogleSearch
  • 操作:使用 GoogleSearch 技能根据用户指定的关键词进行搜索,找到相关的顶级会议论文列表。

步骤 2: 获取论文链接和内容

  • 技能使用#2K ReadArXiv
  • 操作:对于在 arXiv 上可找到的论文,使用 ReadArXiv 技能通过提供的 arXiv 链接直接获取论文的内容。

步骤 3: 提取论文的文本内容

  • 技能使用#2J ReadWebpage
  • 操作:对于非 arXiv 的论文,使用 ReadWebpage 技能从会议官网或其他来源抓取论文的全文内容。

步骤 4: 生成思维导图

  • 技能使用#2H GenerateMindMap
  • 操作:将步骤 3 中获取的文本内容输入到 GenerateMindMap 技能中,自动创建出基于论文内容的思维导图。

步骤 5: 结果呈现

  • 技能使用:无需额外技能。
  • 操作:将生成的思维导图显示给用户,用户可以直接查看或下载。

4.技能配置

网站:Gapier: Free Actions for ChatGPT Users|custom gpts|ChatGPT Actions|GPTs Actions

添加技能:

添加API秘钥

导入URL

测试API能否使用

其他提供技能API的网站

(1)语聚AI

语聚AI:汇聚语言与AI的力量

(2) 官方网站提供的接口

例如:stable diffusion

2.Auto Gen

(1) 环境配置

需要新建一个环境,python一定要是3.10以上

即:

conda create -n agent python==3.10

conda activate agent

pip install autogenstudio

启动服务

autogenstudio ui --port 8081

(2)配置GPT-4的key

在安装agent环境目录下配置GPT-4的key

F:\Anaconda\envs\agent\Lib\site-packages\openai

国内中转GPT4-key的获取

GPT4.0 API KEY By OPENAI HK 中转ChatGPT

https://www.jcapikey.com/register?aff=JQLr

如果部署本地大模型,只需要指定base_url

(3)配备技能

实例1:使用飞书作为技能

获取API并查看参数。docx/O738dALTAoNPQBxnFwNcTnYKnPb

对应的python代码,需要document_id和user_access_token

import requests

def get_feishu(doc_id):
  """
  :param doc_id: 输入需求文档编号
  :return: 返回文档对应文字内容
  """
  url = f"https://open.feishu.cn/open-apis/docx/v1/documents/{doc_id}/raw_content?lang=0"
  payload = ''


  headers = {
    'Authorization': 'Bearer u-dJELIIPZ13paEMIal.HHWY455jq5l5jFj0G011M029Gk'
  }

  response = requests.request("GET", url, headers=headers, data=payload)
  print(response.text)
  return response.text

get_feishu('BYtpdYql5oVwvzxmzvFcLGG8nNW')

将上面的函数添加到技能中

案例2:配备抖音

使用语聚AI连接抖音的接口

语聚AI

(4)配置智能体

(5)定义流程

相关推荐
qq_15321452646 分钟前
Openai Dashboard可视化微调大语言模型
人工智能·语言模型·自然语言处理·chatgpt·nlp·gpt-3·transformer
青松@FasterAI23 分钟前
【Arxiv 大模型最新进展】PEAR: 零额外推理开销,提升RAG性能!(★AI最前线★)
人工智能
huoyingcg30 分钟前
武汉火影数字|VR沉浸式空间制作 VR大空间打造
人工智能·科技·vr·虚拟现实·增强现实
冷冷清清中的风风火火1 小时前
本地部署DeepSeek的硬件配置建议
人工智能·ai
sauTCc1 小时前
RAG实现大致流程
人工智能·知识图谱
lqqjuly1 小时前
人工智能驱动的自动驾驶:技术解析与发展趋势
人工智能·机器学习·自动驾驶
山东布谷科技官方2 小时前
AI大模型发展对语音直播交友系统源码开发搭建的影响
人工智能·实时音视频·交友
thinkMoreAndDoMore2 小时前
深度学习(2)-深度学习关键网络架构
人工智能·深度学习·机器学习
紫雾凌寒2 小时前
计算机视觉基础|从 OpenCV 到频域分析
深度学习·opencv·计算机视觉·傅里叶变换·频域分析
山海青风2 小时前
从零开始玩转TensorFlow:小明的机器学习故事 1
人工智能·机器学习·tensorflow