【Python/Pytorch - 网络模型】-- TV Loss损失函数

文章目录

文章目录

  • [00 写在前面](#00 写在前面)
  • [01 基于Pytorch版本的TV Loss代码](#01 基于Pytorch版本的TV Loss代码)
  • [02 论文下载](#02 论文下载)

00 写在前面

在医学图像重建过程中,经常在代价方程中加入TV 正则项,该正则项作为去噪项,对于重建可以起到很大帮助作用。但是对于一些纹理细节要求较高的任务,加入TV 正则项,在一定程度上可能会降低纹理细节。

对于连续函数,其表达式为:

对于图片而言,即为离散的数值,求每一个像素和横向下一个像素的差的平方,加上纵向下一个像素的差的平方,再开β/2次根:

01 基于Pytorch版本的TV Loss代码

python 复制代码
import torch
from torch.autograd import Variable


class TVLoss(torch.nn.Module):
    """
    TV loss
    """

    def __init__(self, weight=1):
        super(TVLoss, self).__init__()
        self.weight = weight

    def forward(self, x):
        batch_size = x.size()[0]
        h_x = x.size()[2]
        w_x = x.size()[3]
        count_h = self._tensor_size(x[:, :, 1:, :])
        count_w = self._tensor_size(x[:, :, :, 1:])
        h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
        w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
        return self.weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size

    def _tensor_size(self, t):
        return t.size()[1] * t.size()[2] * t.size()[3]


if __name__ == "__main__":
    x = Variable(
        torch.FloatTensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]]]).view(1, 2, 3, 3),
        requires_grad=True)
    tv = TVLoss()
    result = tv(x)
    print(result)

02 论文下载

Understanding Deep Image Representations by Inverting Them

相关推荐
码云数智-大飞30 分钟前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
DisonTangor1 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19822 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了2 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx2 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队2 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
极客数模2 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
不懒不懒2 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6002 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房2 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai