【Python/Pytorch - 网络模型】-- TV Loss损失函数

文章目录

文章目录

  • [00 写在前面](#00 写在前面)
  • [01 基于Pytorch版本的TV Loss代码](#01 基于Pytorch版本的TV Loss代码)
  • [02 论文下载](#02 论文下载)

00 写在前面

在医学图像重建过程中,经常在代价方程中加入TV 正则项,该正则项作为去噪项,对于重建可以起到很大帮助作用。但是对于一些纹理细节要求较高的任务,加入TV 正则项,在一定程度上可能会降低纹理细节。

对于连续函数,其表达式为:

对于图片而言,即为离散的数值,求每一个像素和横向下一个像素的差的平方,加上纵向下一个像素的差的平方,再开β/2次根:

01 基于Pytorch版本的TV Loss代码

python 复制代码
import torch
from torch.autograd import Variable


class TVLoss(torch.nn.Module):
    """
    TV loss
    """

    def __init__(self, weight=1):
        super(TVLoss, self).__init__()
        self.weight = weight

    def forward(self, x):
        batch_size = x.size()[0]
        h_x = x.size()[2]
        w_x = x.size()[3]
        count_h = self._tensor_size(x[:, :, 1:, :])
        count_w = self._tensor_size(x[:, :, :, 1:])
        h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
        w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
        return self.weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size

    def _tensor_size(self, t):
        return t.size()[1] * t.size()[2] * t.size()[3]


if __name__ == "__main__":
    x = Variable(
        torch.FloatTensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]]]).view(1, 2, 3, 3),
        requires_grad=True)
    tv = TVLoss()
    result = tv(x)
    print(result)

02 论文下载

Understanding Deep Image Representations by Inverting Them

相关推荐
自动化小秋葵1 分钟前
Python入门经典题目
开发语言·python
文火冰糖的硅基工坊3 分钟前
[人工智能-大模型-48]:模型层技术 - 大模型与大语言模型不是一回事
人工智能·语言模型·自然语言处理
居7然8 分钟前
DeepSeek OCR:重新定义AI文档处理的“降本增效”新范式
人工智能·算法·语言模型·自然语言处理·大模型·ocr
while(1){yan}16 分钟前
数据结构之堆
数据结构·python·算法
xingxing_F29 分钟前
Topaz Video AI for Mac AI视频无损放大 视频画质增强
人工智能·macos·音视频
普蓝机器人40 分钟前
面向智慧农业的自主移动果蔬采摘机器人:融合视觉识别与自动驾驶的智能化农作系统研究
人工智能·学习·机器人·移动机器人·三维仿真导航
卷福同学41 分钟前
AI浏览器comet拉新,一单20美元(附详细教程)
人工智能·后端
凌晨一点的秃头猪42 分钟前
Python 常见 bug 总结和异常处理
开发语言·python·bug
mortimer43 分钟前
用PySide6 构建一个响应式视频剪辑工具:多线程与信号机制实战
python·ffmpeg·pyqt
新子y1 小时前
【小白笔记】input() 和 print() 这两个函数
笔记·python