【Python/Pytorch - 网络模型】-- TV Loss损失函数

文章目录

文章目录

  • [00 写在前面](#00 写在前面)
  • [01 基于Pytorch版本的TV Loss代码](#01 基于Pytorch版本的TV Loss代码)
  • [02 论文下载](#02 论文下载)

00 写在前面

在医学图像重建过程中,经常在代价方程中加入TV 正则项,该正则项作为去噪项,对于重建可以起到很大帮助作用。但是对于一些纹理细节要求较高的任务,加入TV 正则项,在一定程度上可能会降低纹理细节。

对于连续函数,其表达式为:

对于图片而言,即为离散的数值,求每一个像素和横向下一个像素的差的平方,加上纵向下一个像素的差的平方,再开β/2次根:

01 基于Pytorch版本的TV Loss代码

python 复制代码
import torch
from torch.autograd import Variable


class TVLoss(torch.nn.Module):
    """
    TV loss
    """

    def __init__(self, weight=1):
        super(TVLoss, self).__init__()
        self.weight = weight

    def forward(self, x):
        batch_size = x.size()[0]
        h_x = x.size()[2]
        w_x = x.size()[3]
        count_h = self._tensor_size(x[:, :, 1:, :])
        count_w = self._tensor_size(x[:, :, :, 1:])
        h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
        w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
        return self.weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size

    def _tensor_size(self, t):
        return t.size()[1] * t.size()[2] * t.size()[3]


if __name__ == "__main__":
    x = Variable(
        torch.FloatTensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]]]).view(1, 2, 3, 3),
        requires_grad=True)
    tv = TVLoss()
    result = tv(x)
    print(result)

02 论文下载

Understanding Deep Image Representations by Inverting Them

相关推荐
咚咚王者11 小时前
人工智能之核心基础 机器学习 第十四章 半监督与自监督学习总结归纳
人工智能·学习·机器学习
一代明君Kevin学长11 小时前
记录一个上手即用的Spring全局返回值&异常处理框架
java·网络·python·spring
教游泳的程序员11 小时前
【面试问题精选】java开发工程师
python·面试·职场和发展
风栖柳白杨11 小时前
【语音识别】SenseVoice非流式改流式
人工智能·语音识别
Aloudata11 小时前
企业落地 AI 数据分析,如何做好敏感数据安全防护?
人工智能·安全·数据挖掘·数据分析·chatbi·智能问数·dataagent
安达发公司11 小时前
安达发|煤炭行业APS高级排产:开启高效生产新时代
大数据·人工智能·aps高级排程·安达发aps·车间排产软件·aps高级排产
爬山算法11 小时前
Hibernate(43)Hibernate中的级联删除如何实现?
java·python·hibernate
中科天工11 小时前
如何实现工业4.0智能制造的自动化包装解决方案?
大数据·人工智能·智能
Stream_Silver11 小时前
【安装与配置Anaconda步骤,包含卸载重装】
python·conda
ai_top_trends11 小时前
AI 生成 PPT 工具横评:效率、质量、稳定性一次说清
人工智能·python·powerpoint