RNN循环卷积神经网络

1.定义

RNN (Recurrent Neural Network,RNN)循环卷积神经网络,用于处理序列数据。

序列数据:按照一定的顺序排列的数据,可以是时间顺序、空间顺序、逻辑顺序。

eg:电影、语言

2.特点

传统神经网络模型无法处理可变长度的输入。
传统神经网络模型

传统神经网络模型无法处理可变长度的输入,但是RNN通过循环的方式对当前输入和历史输入进行处理。
RNN输入示意图

3.应用

  • 对序列数据预测。股票、价格、语言进行预测
  • 结合CNN对静态图像的动态内容进行描述。

RNN举例------猫咪喝水

4.RNN模型扩展------LSTM模型

  1. 简单RNN模型

简单RNN模型就是上述讲的历史状态+现在值作为输入的模型,这种模型缺点是会出现梯度爆炸或梯度消失,为了缓解这种问题出现了LSTM模型。

  • 梯度爆炸:在链式求导和激活函数综合影响下,梯度值过大,导致权重更新过大不可用。
  • 梯度消失:在链式求导和激活函数综合影响下,梯度值趋近于0,导致权重过小不可用。
  1. LTSM模型

LSTM模型对于记忆状态进行过滤和新增给出输出,它相比于传统的RNN模型降低了梯度消失和爆炸的可能。

  • 组成:记忆状态,三个sigmoid函数,两个tanH函数。
  • 组成介绍:sigmoid区间0-1,可以控制信息的流量。三个sigmoid函数分别控制遗忘门、输入门、输出门的信息流量。tanH区间-1~1,可以控制信息的增减,分别在输入门和输出门和sigmoid函数共同作用。
  • 具体流程:当前输入与第一个sigmoid函数结合确定有多少历史记忆状态需要过滤掉,然后将过滤后的历史状态与当前输入的某些信息相结合(第2个sigmoid函数和tanH控制是信息流量和增减情况),得到新的记忆状态。

LTSM模型示意图

参考文献:【数之道 09】揭开循环神经网络RNN模型的面纱_哔哩哔哩_bilibili

相关推荐
饭饭大王6661 天前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
小喵要摸鱼1 天前
【卷积神经网络】卷积层、池化层、全连接层
人工智能·深度学习·cnn
LO嘉嘉VE1 天前
学习笔记二十一:深度学习
笔记·深度学习·学习
vvoennvv1 天前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
xwill*1 天前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
程序猿追1 天前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
青瓷程序设计1 天前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
余蓝1 天前
本地部署!文生图LCM超简单教程
图像处理·人工智能·深度学习·ai作画·stable diffusion·dall·e 2
陈文锦丫1 天前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
Coding茶水间2 天前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉