RNN循环卷积神经网络

1.定义

RNN (Recurrent Neural Network,RNN)循环卷积神经网络,用于处理序列数据。

序列数据:按照一定的顺序排列的数据,可以是时间顺序、空间顺序、逻辑顺序。

eg:电影、语言

2.特点

传统神经网络模型无法处理可变长度的输入。
传统神经网络模型

传统神经网络模型无法处理可变长度的输入,但是RNN通过循环的方式对当前输入和历史输入进行处理。
RNN输入示意图

3.应用

  • 对序列数据预测。股票、价格、语言进行预测
  • 结合CNN对静态图像的动态内容进行描述。

RNN举例------猫咪喝水

4.RNN模型扩展------LSTM模型

  1. 简单RNN模型

简单RNN模型就是上述讲的历史状态+现在值作为输入的模型,这种模型缺点是会出现梯度爆炸或梯度消失,为了缓解这种问题出现了LSTM模型。

  • 梯度爆炸:在链式求导和激活函数综合影响下,梯度值过大,导致权重更新过大不可用。
  • 梯度消失:在链式求导和激活函数综合影响下,梯度值趋近于0,导致权重过小不可用。
  1. LTSM模型

LSTM模型对于记忆状态进行过滤和新增给出输出,它相比于传统的RNN模型降低了梯度消失和爆炸的可能。

  • 组成:记忆状态,三个sigmoid函数,两个tanH函数。
  • 组成介绍:sigmoid区间0-1,可以控制信息的流量。三个sigmoid函数分别控制遗忘门、输入门、输出门的信息流量。tanH区间-1~1,可以控制信息的增减,分别在输入门和输出门和sigmoid函数共同作用。
  • 具体流程:当前输入与第一个sigmoid函数结合确定有多少历史记忆状态需要过滤掉,然后将过滤后的历史状态与当前输入的某些信息相结合(第2个sigmoid函数和tanH控制是信息流量和增减情况),得到新的记忆状态。

LTSM模型示意图

参考文献:【数之道 09】揭开循环神经网络RNN模型的面纱_哔哩哔哩_bilibili

相关推荐
硅谷秋水1 小时前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理
林泽毅2 小时前
SwanLab Slack通知插件:让AI训练状态同步更及时
深度学习·机器学习·强化学习
大霸王龙2 小时前
LLM(语言学习模型)行为控制技术
python·深度学习·学习
机器学习之心3 小时前
区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
matlab·回归·cnn·分位数回归·时间卷积神经网络·qrtcn·区间预测模型
Peter11467178503 小时前
服务器入门操作1(深度学习)
服务器·人工智能·笔记·深度学习·学习
蓝博AI8 小时前
基于卷积神经网络的眼疾识别系统,resnet50,efficentnet(pytorch框架,python代码)
pytorch·python·cnn
lisw0511 小时前
DeepSeek原生稀疏注意力(Native Sparse Attention, NSA)算法介绍
人工智能·深度学习·算法
美狐美颜sdk15 小时前
美颜SDK兼容性挑战:如何让美颜滤镜API适配iOS与安卓?
android·深度学习·ios·美颜sdk·第三方美颜sdk·视频美颜sdk
HABuo15 小时前
【YOLOv8】YOLOv8改进系列(11)----替换主干网络之MobileNetV4
人工智能·深度学习·yolo·目标检测·计算机视觉