RNN循环卷积神经网络

1.定义

RNN (Recurrent Neural Network,RNN)循环卷积神经网络,用于处理序列数据。

序列数据:按照一定的顺序排列的数据,可以是时间顺序、空间顺序、逻辑顺序。

eg:电影、语言

2.特点

传统神经网络模型无法处理可变长度的输入。
传统神经网络模型

传统神经网络模型无法处理可变长度的输入,但是RNN通过循环的方式对当前输入和历史输入进行处理。
RNN输入示意图

3.应用

  • 对序列数据预测。股票、价格、语言进行预测
  • 结合CNN对静态图像的动态内容进行描述。

RNN举例------猫咪喝水

4.RNN模型扩展------LSTM模型

  1. 简单RNN模型

简单RNN模型就是上述讲的历史状态+现在值作为输入的模型,这种模型缺点是会出现梯度爆炸或梯度消失,为了缓解这种问题出现了LSTM模型。

  • 梯度爆炸:在链式求导和激活函数综合影响下,梯度值过大,导致权重更新过大不可用。
  • 梯度消失:在链式求导和激活函数综合影响下,梯度值趋近于0,导致权重过小不可用。
  1. LTSM模型

LSTM模型对于记忆状态进行过滤和新增给出输出,它相比于传统的RNN模型降低了梯度消失和爆炸的可能。

  • 组成:记忆状态,三个sigmoid函数,两个tanH函数。
  • 组成介绍:sigmoid区间0-1,可以控制信息的流量。三个sigmoid函数分别控制遗忘门、输入门、输出门的信息流量。tanH区间-1~1,可以控制信息的增减,分别在输入门和输出门和sigmoid函数共同作用。
  • 具体流程:当前输入与第一个sigmoid函数结合确定有多少历史记忆状态需要过滤掉,然后将过滤后的历史状态与当前输入的某些信息相结合(第2个sigmoid函数和tanH控制是信息流量和增减情况),得到新的记忆状态。

LTSM模型示意图

参考文献:【数之道 09】揭开循环神经网络RNN模型的面纱_哔哩哔哩_bilibili

相关推荐
似乎很简单2 小时前
卷积神经网络(CNN)
深度学习·神经网络·cnn
盼小辉丶3 小时前
Transformer实战(18)——微调Transformer语言模型进行回归分析
深度学习·语言模型·回归·transformer
格林威3 小时前
机器视觉检测如何使用360 度全景成像镜头进行AI 瑕疵检测
人工智能·深度学习·数码相机·机器学习·计算机视觉·视觉检测·相机
九章云极AladdinEdu3 小时前
深度学习优化器进化史:从SGD到AdamW的原理与选择
linux·服务器·开发语言·网络·人工智能·深度学习·gpu算力
ACEEE12226 小时前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
NG WING YIN7 小时前
Golang關於信件的
开发语言·深度学习·golang
大千AI助手8 小时前
残差:从统计学到深度学习的核心概念
人工智能·深度学习·resnet·统计学·方差分析·残差·残差分析
max5006008 小时前
使用OmniAvatar-14B模型实现照片和文字生成视频的完整指南
图像处理·人工智能·深度学习·算法·音视频
技术程序猿华锋9 小时前
深度解码OpenAI的2025野心:Codex重生与GPT-5 APIKey获取调用示例
人工智能·vscode·python·gpt·深度学习·编辑器
linjoe9915 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu