对红酒数据集,分别采用决策树算法和随机森林算法进行分类。

1.导入所需要的包

python 复制代码
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split

2.导入数据,并且对随机森林和决策数进行对比

python 复制代码
x_train,x_test,y_train,y_test=train_test_split(wine.data,wine.target,test_size=0.3)
clf=DecisionTreeClassifier(random_state=0)
rfc=RandomForestClassifier(random_state=0)
clf=clf.fit(x_train,y_train)
rfc=rfc.fit(x_train,y_train)
score_c=clf.score(x_test,y_test)
score_r=rfc.score(x_test,y_test)
print(score_c,score_r)

运行结果:

0.8703703703703703 0.9259259259259259

3.数据可视化

python 复制代码
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
%matplotlib inline
wine=load_wine()
rfc=RandomForestClassifier(n_estimators=25)
rfc_s=cross_val_score(rfc,wine.data,wine.target,cv=10)
clf=DecisionTreeClassifier()
clf_s=cross_val_score(clf,wine.data,wine.target,cv=10)
plt.plot(range(1,11),rfc_s,label='RandomForest')
plt.plot(range(1,11),clf_s,label='DecisionTree')
plt.legend()
plt.show()

运行结果:

相关推荐
颜酱2 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919102 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878382 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz2 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女3 小时前
TRSV优化2
算法
代码游侠3 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472464 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
abluckyboy4 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
园小异4 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展
m0_706653234 小时前
分布式系统安全通信
开发语言·c++·算法