论文辅导 | 基于K-means聚类和ELM神经网络的养殖水质溶解氧预测

辅导文章

模型描述

1)相似度统计量构造。数据归一化后,利用皮尔森相关系数确定环境因子权重,构造相似日的统计量-相似度。

2)K-means 聚类。根据相似度应用 K-means 聚类法对历史日数据样本聚类,找出合适样本,使得历史日样本被分为若干类。

3)预测日所属类别识别。以相似度最大的类别作为预测日的类别,形成训练样本。

4)ELM 神经网络建模与预测。利用训练样本建立ELM 神经网络模型,利用测试样本对模型进行验证。最后,经过补偿及反归一化过程得出最后预测值。

预测效果


相关推荐
生成论实验室12 小时前
周林东的生成论入门十讲 · 第八讲 生成的世界——物理学与生物学新视角
人工智能·科技·神经网络·信息与通信·几何学
熊猫钓鱼>_>15 小时前
TensorFlow深度学习框架入门浅析
深度学习·神经网络·tensorflow·neo4j·张量·训练模型·评估模型
科学最TOP16 小时前
IJCAI25|如何平衡文本与时序信息的融合适配?
人工智能·深度学习·神经网络·机器学习·时间序列
勤劳的进取家19 小时前
论文阅读:农业喷雾无人机避障技术综述
论文阅读·嵌入式硬件·神经网络·计算机视觉·无人机
永霖光电_UVLED20 小时前
安森美与英诺赛科将合作推进氮化镓(GaN)功率器件的量产应用
人工智能·神经网络·生成对抗网络
人工智能培训1 天前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
牛阿大1 天前
关于前馈神经网络
人工智能·深度学习·神经网络
free-elcmacom1 天前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
老欧学视觉1 天前
0013机器学习聚类算法(无监督算法)
算法·机器学习·聚类
龙腾AI白云2 天前
【卷积神经网络(CNN)详细介绍及其原理详解 】
深度学习·神经网络