机器学习--概念理解

知识点

一、机器学习概述

  1. 人工智能

  2. 机器学习

  3. 深度学习

  4. 学习的范围:模式识别、数据挖掘、统计学习、计算机视觉、语音识别、自然语言处理

  5. 可以解决的问题:给定数据的预测问题

二、机器学习的类型

  • 监督学习

    • 分类

    • 回归

  • 无监督学习

    • 聚类

    • 降维

  • 强化学习

三、机器学习的背景知识

  • 数学基础:高等数学,线性代数,概率论与数理统计

  • python基础:numpy,pandas,scipy,mathplotlib,scikit-learn

四、机器学习的开发流程

五、练习

课程:Code.org

相关推荐
程序员佳佳7 分钟前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
鲨莎分不晴16 分钟前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
工业机器视觉设计和实现31 分钟前
lenet改vgg成功后,我们再改为最简单的resnet
人工智能
jiayong2337 分钟前
Spring AI Alibaba 深度解析(三):实战示例与最佳实践
java·人工智能·spring
刘某的Cloud40 分钟前
列表、元组、字典、集合-组合数据类型
linux·开发语言·python
北邮刘老师1 小时前
【智能体互联协议解析】需要“智能体名字系统”(ANS)吗?
网络·人工智能·大模型·智能体·智能体互联网
ys~~1 小时前
git学习
git·vscode·python·深度学习·学习·nlp·github
Mqh1807621 小时前
day46 Grad-CAM
python
梁辰兴1 小时前
AI解码千年甲骨文,指尖触碰的文明觉醒!
人工智能·ai·ai+·文明·甲骨文·ai赋能·梁辰兴
郝学胜-神的一滴1 小时前
Python魔法函数一览:解锁面向对象编程的奥秘
开发语言·python·程序人生