泰勒公式中拉格朗日余项和佩亚诺余项的区别及具体的应用场景案例

泰勒公式是微积分中的一个重要工具,用于将一个函数在某一点附近展开成多项式形式,以便于近似计算和分析。泰勒公式的一般形式为:

f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n+Rn(x)

其中, R n ( x ) R_n(x) Rn(x) 是余项,表示泰勒多项式与原函数之间的误差。余项有两种常见的形式:拉格朗日余项和佩亚诺余项。


拉格朗日余项

拉格朗日余项给出了泰勒展开式中误差的精确表达式。对于一个 n n n 次泰勒展开式,拉格朗日余项的形式为:

R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − a ) n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(x−a)n+1

其中, ξ \xi ξ 是介于 a a a 和 x x x 之间的一个数。拉格朗日余项的关键在于它提供了一个具体的误差估计,这个误差是由 f f f 的 ( n + 1 ) (n+1) (n+1) 阶导数在某个中间点 ξ \xi ξ 处的值决定的。

应用场景案例

假设我们想要近似计算 sin ⁡ ( 0.1 ) \sin(0.1) sin(0.1) 的值,并且希望知道近似值的误差范围。我们可以使用泰勒展开式:

sin ⁡ ( x ) ≈ sin ⁡ ( 0 ) + cos ⁡ ( 0 ) x − sin ⁡ ( 0 ) 2 ! x 2 − cos ⁡ ( 0 ) 3 ! x 3 \sin(x) \approx \sin(0) + \cos(0)x - \frac{\sin(0)}{2!}x^2 - \frac{\cos(0)}{3!}x^3 sin(x)≈sin(0)+cos(0)x−2!sin(0)x2−3!cos(0)x3

即:

sin ⁡ ( x ) ≈ x − x 3 6 \sin(x) \approx x - \frac{x^3}{6} sin(x)≈x−6x3

对于 x = 0.1 x = 0.1 x=0.1,我们有:

sin ⁡ ( 0.1 ) ≈ 0.1 − ( 0.1 ) 3 6 ≈ 0.1 − 0.00016667 ≈ 0.09983333 \sin(0.1) \approx 0.1 - \frac{(0.1)^3}{6} \approx 0.1 - 0.00016667 \approx 0.09983333 sin(0.1)≈0.1−6(0.1)3≈0.1−0.00016667≈0.09983333

使用拉格朗日余项,我们可以估计误差:

R 3 ( 0.1 ) = sin ⁡ ( ξ ) 4 ! ( 0.1 ) 4 R_3(0.1) = \frac{\sin(\xi)}{4!}(0.1)^4 R3(0.1)=4!sin(ξ)(0.1)4

由于 sin ⁡ ( ξ ) \sin(\xi) sin(ξ) 的最大值为 1(在 ξ \xi ξ 介于 0 和 0.1 之间时),我们有:

∣ R 3 ( 0.1 ) ∣ ≤ 1 24 ( 0.1 ) 4 ≈ 0.000004167 |R_3(0.1)| \leq \frac{1}{24}(0.1)^4 \approx 0.000004167 ∣R3(0.1)∣≤241(0.1)4≈0.000004167

因此,近似值 0.09983333 0.09983333 0.09983333 的误差不超过 0.000004167 0.000004167 0.000004167。


佩亚诺余项

佩亚诺余项则给出了泰勒展开式中误差的一个渐近表达式。对于一个 n n n 次泰勒展开式,佩亚诺余项的形式为:

R n ( x ) = o ( ( x − a ) n ) R_n(x) = o((x-a)^n) Rn(x)=o((x−a)n)

这里的 o ( ( x − a ) n ) o((x-a)^n) o((x−a)n) 表示一个小量,当 x x x 趋近于 a a a 时, R n ( x ) R_n(x) Rn(x) 比 ( x − a ) n (x-a)^n (x−a)n 更快地趋近于零。佩亚诺余项的关键在于它描述了误差的一个渐近行为,而不是一个具体的数值。

应用场景案例

假设我们想要证明 lim ⁡ x → 0 sin ⁡ ( x ) x = 1 \lim_{x \to 0} \frac{\sin(x)}{x} = 1 limx→0xsin(x)=1。我们可以使用泰勒展开式:

sin ⁡ ( x ) = x − x 3 6 + o ( x 3 ) \sin(x) = x - \frac{x^3}{6} + o(x^3) sin(x)=x−6x3+o(x3)

因此:

sin ⁡ ( x ) x = 1 − x 2 6 + o ( x 2 ) \frac{\sin(x)}{x} = 1 - \frac{x^2}{6} + o(x^2) xsin(x)=1−6x2+o(x2)

当 x → 0 x \to 0 x→0 时, o ( x 2 ) o(x^2) o(x2) 趋近于零,所以:

lim ⁡ x → 0 sin ⁡ ( x ) x = 1 \lim_{x \to 0} \frac{\sin(x)}{x} = 1 x→0limxsin(x)=1

在这个例子中,佩亚诺余项帮助我们理解了 sin ⁡ ( x ) x \frac{\sin(x)}{x} xsin(x) 在 x x x 趋近于零时的渐近行为。


区别

  1. 精确性

    • 拉格朗日余项给出了误差的一个精确表达式,可以用来估计具体的误差大小。
    • 佩亚诺余项给出了误差的一个渐近行为,主要用于理论分析,不提供具体的误差数值。
  2. 应用场景

    • 拉格朗日余项适用于需要具体误差估计的情况,例如在数值计算中。
    • 佩亚诺余项适用于理论分析,特别是在证明某些极限或渐近性质时。
  3. 数学形式

    • 拉格朗日余项包含了一个未知的中间点 ξ \xi ξ,这使得它在实际应用中可能难以精确计算。
    • 佩亚诺余项的形式更简洁,易于处理,但它的信息量较少。

相关推荐
Power20246661 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k1 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
知来者逆2 小时前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
老艾的AI世界3 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
Chef_Chen4 小时前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
AI街潜水的八角5 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦5 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
Chef_Chen7 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng7 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习