【Python机器学习】算法链与管道——利用网格搜索选择使用哪个模型

我们可以进一步将GridSearchCV和Pipeline结合起来:还可以搜索管道中正在执行的实际步骤(比如用StandardScaler还是用MinMaxScaler)。这样会导致更大的搜索空间,应该予以仔细考虑。

尝试所有可能的解决方案,通常并不是一种可行的机器学习策略。但下面是一个例子:在iris数据集上比较RandomForestClassifier和SVC。我们知道,SVC可能需要对数据进行缩放,所以我们还需要搜索是使用StandardScaler还是不使用预处理。我们知道,RandomForestClassifier不需要预处理。我们先定义管道。这里我们显式地对步骤命名。需要两个步骤,一个用于预处理,然后是一个分类器。我们可以用SVC和StandardScaler来将其实例化:

python 复制代码
pipe=Pipeline(
    [('preprocessing',StandardScaler()),('classifier',SVC())]
)

现在我们可以定义需要搜索的param_grid。我们希望classifier是RandomForestClassifier或SVC。由于这两种分类器需要调节不同的参数,并且需要不同的预处理,所以我们可以使用搜索网格列表。

为了将一个估计器分配给一个步骤,我们使用步骤名称作为参数名称。如果我们想跳过管道中的某个步骤,则可以将该步骤设置为None:

python 复制代码
param_grid=[
    {
        'classifier':[SVC()],
        'preprocessing':[StandardScaler(),None],
        'classifier__gamma':[0.001,0.01,0.1,1,10,100],
        'classifier__C':[0.001,0.01,0.1,1,10,100]
    },
    {
        'classifier':[RandomForestClassifier(n_estimators=100)],
        'preprocessing':[None],
        'classifier__max_features':[1,2,3]
    }
]

现在,我们将网格搜索实例化,并在数据集上运行:

python 复制代码
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)
grid=GridSearchCV(pipe,param_grid=param_grid,cv=5)
grid.fit(X_train,y_train)
print('最佳模型参数:{}'.format(grid.best_params_))
print('最佳交叉验证分数:{}'.format(grid.best_score_))
print('最佳模型在测试集精度:{}'.format(grid.score(X_test,y_test)))

可以看到,网格搜索后的结果,最佳模型是SVC、StandardScaler预处理,在C=100和gamma=0.01时的结果最好。

相关推荐
阿斯卡码1 小时前
jupyter添加、删除、查看内核
ide·python·jupyter
passer__jw7671 小时前
【LeetCode】【算法】3. 无重复字符的最长子串
算法·leetcode
passer__jw7671 小时前
【LeetCode】【算法】21. 合并两个有序链表
算法·leetcode·链表
sweetheart7-71 小时前
LeetCode22. 括号生成(2024冬季每日一题 2)
算法·深度优先·力扣·dfs·左右括号匹配
懒惰的bit2 小时前
基础网络安全知识
学习·web安全·1024程序员节
SRY122404192 小时前
javaSE面试题
java·开发语言·面试
小于小于大橙子2 小时前
视觉SLAM数学基础
人工智能·数码相机·自动化·自动驾驶·几何学
无尽的大道3 小时前
Java 泛型详解:参数化类型的强大之处
java·开发语言
ZIM学编程3 小时前
Java基础Day-Sixteen
java·开发语言·windows
放逐者-保持本心,方可放逐3 小时前
react 组件应用
开发语言·前端·javascript·react.js·前端框架