【Python机器学习】算法链与管道——利用网格搜索选择使用哪个模型

我们可以进一步将GridSearchCV和Pipeline结合起来:还可以搜索管道中正在执行的实际步骤(比如用StandardScaler还是用MinMaxScaler)。这样会导致更大的搜索空间,应该予以仔细考虑。

尝试所有可能的解决方案,通常并不是一种可行的机器学习策略。但下面是一个例子:在iris数据集上比较RandomForestClassifier和SVC。我们知道,SVC可能需要对数据进行缩放,所以我们还需要搜索是使用StandardScaler还是不使用预处理。我们知道,RandomForestClassifier不需要预处理。我们先定义管道。这里我们显式地对步骤命名。需要两个步骤,一个用于预处理,然后是一个分类器。我们可以用SVC和StandardScaler来将其实例化:

python 复制代码
pipe=Pipeline(
    [('preprocessing',StandardScaler()),('classifier',SVC())]
)

现在我们可以定义需要搜索的param_grid。我们希望classifier是RandomForestClassifier或SVC。由于这两种分类器需要调节不同的参数,并且需要不同的预处理,所以我们可以使用搜索网格列表。

为了将一个估计器分配给一个步骤,我们使用步骤名称作为参数名称。如果我们想跳过管道中的某个步骤,则可以将该步骤设置为None:

python 复制代码
param_grid=[
    {
        'classifier':[SVC()],
        'preprocessing':[StandardScaler(),None],
        'classifier__gamma':[0.001,0.01,0.1,1,10,100],
        'classifier__C':[0.001,0.01,0.1,1,10,100]
    },
    {
        'classifier':[RandomForestClassifier(n_estimators=100)],
        'preprocessing':[None],
        'classifier__max_features':[1,2,3]
    }
]

现在,我们将网格搜索实例化,并在数据集上运行:

python 复制代码
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)
grid=GridSearchCV(pipe,param_grid=param_grid,cv=5)
grid.fit(X_train,y_train)
print('最佳模型参数:{}'.format(grid.best_params_))
print('最佳交叉验证分数:{}'.format(grid.best_score_))
print('最佳模型在测试集精度:{}'.format(grid.score(X_test,y_test)))

可以看到,网格搜索后的结果,最佳模型是SVC、StandardScaler预处理,在C=100和gamma=0.01时的结果最好。

相关推荐
hsjkdhs1 分钟前
C++之多态
开发语言·jvm·c++
四维碎片3 分钟前
【Qt】乌班图安装Qt环境
开发语言·数据库·qt
阿里云大数据AI技术7 分钟前
AI刷新赛事体验,PAI-ArtLab支撑“我的NBA AI手办”互动
人工智能
kyle~8 分钟前
C++STL---静态数组array
开发语言·c++
B站_计算机毕业设计之家14 分钟前
大数据实战:Python+Flask 汽车数据分析可视化系统(爬虫+线性回归预测+推荐 源码+文档)✅
大数据·python·数据分析·flask·汽车·线性回归·预测
晚枫~16 分钟前
零基础快速上手Playwright自动化测试
javascript·python·测试工具·c#·自动化
~无忧花开~17 分钟前
JavaScript学习笔记(二十八):JavaScript性能优化全攻略
开发语言·前端·javascript·笔记·学习·性能优化·js
机器学习之心18 分钟前
PINN物理信息神经网络风电功率预测!引入物理先验知识嵌入学习的风电功率预测新范式!Matlab实现
神经网络·学习·matlab·风电功率预测·物理信息神经网络
zhy2956319 分钟前
【DNN】基础环境搭建
人工智能·tensorrt·cuda·开发环境·cudnn
PKNLP21 分钟前
NLP入门
人工智能·自然语言处理