Open3D 删除点云中重叠的点(方法二)

目录

一、概述

1.1原理

1.2应用

二、代码实现

三、实现效果

3.1原始点云

3.2处理后点云

3.3数据对比


一、概述

在点云处理中,重叠点(即重复点)可能会对数据分析和处理的结果产生负面影响。因此,删除重叠点是点云预处理中常见且重要的步骤。

1.1原理

删除重叠点的常见方法是使用体素下采样(Voxel Downsampling)技术。体素下采样通过将三维空间划分为固定大小的立方体(体素),并在每个体素中保留一个代表点,从而去除重复点和减少点云数据量。具体步骤如下:

  1. 体素划分:将点云空间划分为固定大小的立方体网格(体素)。
  2. 点的分配:将每个点分配到相应的体素中。
  3. 体素代表点:对于每个非空体素,计算该体素内所有点的质心或选择其中一个点作为代表点。
  4. 生成下采样后的点云:以这些代表点构成新的点云,从而删除重叠点和减少点云数据量。

1.2应用

  • 数据压缩:通过删除重叠点,减少点云数据量,从而降低存储和处理的成本。
  • 提高计算效率:删除重叠点后,点云数据量减少,可以显著提高后续处理算法的效率,如点云配准、表面重建等。
  • 噪声过滤:重叠点可能是由传感器噪声或重复扫描引起的,通过删除重叠点,可以改善点云数据质量。
  • 三维建模:在三维重建和建模中,删除重叠点有助于生成更光滑和准确的模型。

二、代码实现

python 复制代码
import copy
import open3d as o3d

# 删除点云中的重叠点
def remove_duplicates(pcd, voxel_size=0.01):
    pcd2 = copy.deepcopy(pcd)
    # 通过体素下采样删除重叠点
    pcd2 = pcd2.voxel_down_sample(voxel_size)
    return pcd2


pcd = o3d.io.read_point_cloud("test.pcd")
o3d.visualization.draw_geometries([pcd])

# 删除重叠点
pcd_without_duplicates = remove_duplicates(pcd)
print("原始点云个数:", pcd)
print("去重之后:", pcd_without_duplicates)
pcd.paint_uniform_color([1, 0, 0])
pcd_without_duplicates.paint_uniform_color([0, 1, 0])
o3d.visualization.draw_geometries([pcd,pcd_without_duplicates])

三、实现效果

3.1原始点云

3.2处理后点云

3.3数据对比

python 复制代码
原始点云个数: PointCloud with 2400 points.
去重之后: PointCloud with 1999 points.
相关推荐
艾莉丝努力练剑4 分钟前
【C/C++】类和对象(上):(一)类和结构体,命名规范——两大规范,新的作用域——类域
java·c语言·开发语言·c++·学习·算法
AndrewHZ16 分钟前
【图像处理基石】如何对遥感图像进行实例分割?
图像处理·人工智能·python·大模型·实例分割·detectron2·遥感图像分割
No0d1es32 分钟前
第13届蓝桥杯Python青少组中/高级组选拔赛(STEMA)2021年11月27日真题
python·青少年编程·蓝桥杯·选拔赛
TDengine (老段)34 分钟前
TDengine 中 TDgp 中添加机器学习模型
大数据·数据库·算法·机器学习·数据分析·时序数据库·tdengine
CodeShare44 分钟前
某中心将举办机器学习峰会
人工智能·机器学习·数据科学
天天找自己1 小时前
精通分类:解析Scikit-learn中的KNN、朴素贝叶斯与决策树(含随机森林)
python·决策树·机器学习·分类·scikit-learn
那就摆吧1 小时前
U-Net vs. 传统CNN:为什么医学图像分割需要跳过连接?
人工智能·神经网络·cnn·u-net·医学图像
深度学习实战训练营1 小时前
中英混合的语音识别XPhoneBERT 监督的音频到音素的编码器结合 f0 特征LID
人工智能·音视频·语音识别
WADesk---瓜子1 小时前
用 AI 自动生成口型同步视频,短视频内容也能一人完成
人工智能·音视频·语音识别·流量运营·用户运营