Open3D 删除点云中重叠的点(方法二)

目录

一、概述

1.1原理

1.2应用

二、代码实现

三、实现效果

3.1原始点云

3.2处理后点云

3.3数据对比


一、概述

在点云处理中,重叠点(即重复点)可能会对数据分析和处理的结果产生负面影响。因此,删除重叠点是点云预处理中常见且重要的步骤。

1.1原理

删除重叠点的常见方法是使用体素下采样(Voxel Downsampling)技术。体素下采样通过将三维空间划分为固定大小的立方体(体素),并在每个体素中保留一个代表点,从而去除重复点和减少点云数据量。具体步骤如下:

  1. 体素划分:将点云空间划分为固定大小的立方体网格(体素)。
  2. 点的分配:将每个点分配到相应的体素中。
  3. 体素代表点:对于每个非空体素,计算该体素内所有点的质心或选择其中一个点作为代表点。
  4. 生成下采样后的点云:以这些代表点构成新的点云,从而删除重叠点和减少点云数据量。

1.2应用

  • 数据压缩:通过删除重叠点,减少点云数据量,从而降低存储和处理的成本。
  • 提高计算效率:删除重叠点后,点云数据量减少,可以显著提高后续处理算法的效率,如点云配准、表面重建等。
  • 噪声过滤:重叠点可能是由传感器噪声或重复扫描引起的,通过删除重叠点,可以改善点云数据质量。
  • 三维建模:在三维重建和建模中,删除重叠点有助于生成更光滑和准确的模型。

二、代码实现

python 复制代码
import copy
import open3d as o3d

# 删除点云中的重叠点
def remove_duplicates(pcd, voxel_size=0.01):
    pcd2 = copy.deepcopy(pcd)
    # 通过体素下采样删除重叠点
    pcd2 = pcd2.voxel_down_sample(voxel_size)
    return pcd2


pcd = o3d.io.read_point_cloud("test.pcd")
o3d.visualization.draw_geometries([pcd])

# 删除重叠点
pcd_without_duplicates = remove_duplicates(pcd)
print("原始点云个数:", pcd)
print("去重之后:", pcd_without_duplicates)
pcd.paint_uniform_color([1, 0, 0])
pcd_without_duplicates.paint_uniform_color([0, 1, 0])
o3d.visualization.draw_geometries([pcd,pcd_without_duplicates])

三、实现效果

3.1原始点云

3.2处理后点云

3.3数据对比

python 复制代码
原始点云个数: PointCloud with 2400 points.
去重之后: PointCloud with 1999 points.
相关推荐
paopao_wu3 分钟前
人脸检测与识别-InsightFace:特征向量提取与识别
人工智能·目标检测
灰灰勇闯IT4 分钟前
KMP算法在鸿蒙系统中的应用:从字符串匹配到高效系统级开发(附实战代码)
算法·华为·harmonyos
小龙报5 分钟前
【算法通关指南:数据结构和算法篇 】队列相关算法题:3.海港
数据结构·c++·算法·贪心算法·创业创新·学习方法·visual studio
csuzhucong8 分钟前
一阶魔方、一阶金字塔魔方、一阶五魔方
算法
Aevget14 分钟前
MyEclipse全新发布v2025.2——AI + Java 24 +更快的调试
java·ide·人工智能·eclipse·myeclipse
五花就是菜21 分钟前
P12906 [NERC 2020] Guide 题解
算法·深度优先·图论
IT_陈寒23 分钟前
React 18并发渲染实战:5个核心API让你的应用性能飙升50%
前端·人工智能·后端
韩曙亮27 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
辞旧 lekkk33 分钟前
【c++】封装红黑树实现mymap和myset
c++·学习·算法·萌新
科普瑞传感仪器35 分钟前
从轴孔装配到屏幕贴合:六维力感知的机器人柔性对位应用详解
前端·javascript·数据库·人工智能·机器人·自动化·无人机