Open3D 删除点云中重叠的点(方法二)

目录

一、概述

1.1原理

1.2应用

二、代码实现

三、实现效果

3.1原始点云

3.2处理后点云

3.3数据对比


一、概述

在点云处理中,重叠点(即重复点)可能会对数据分析和处理的结果产生负面影响。因此,删除重叠点是点云预处理中常见且重要的步骤。

1.1原理

删除重叠点的常见方法是使用体素下采样(Voxel Downsampling)技术。体素下采样通过将三维空间划分为固定大小的立方体(体素),并在每个体素中保留一个代表点,从而去除重复点和减少点云数据量。具体步骤如下:

  1. 体素划分:将点云空间划分为固定大小的立方体网格(体素)。
  2. 点的分配:将每个点分配到相应的体素中。
  3. 体素代表点:对于每个非空体素,计算该体素内所有点的质心或选择其中一个点作为代表点。
  4. 生成下采样后的点云:以这些代表点构成新的点云,从而删除重叠点和减少点云数据量。

1.2应用

  • 数据压缩:通过删除重叠点,减少点云数据量,从而降低存储和处理的成本。
  • 提高计算效率:删除重叠点后,点云数据量减少,可以显著提高后续处理算法的效率,如点云配准、表面重建等。
  • 噪声过滤:重叠点可能是由传感器噪声或重复扫描引起的,通过删除重叠点,可以改善点云数据质量。
  • 三维建模:在三维重建和建模中,删除重叠点有助于生成更光滑和准确的模型。

二、代码实现

python 复制代码
import copy
import open3d as o3d

# 删除点云中的重叠点
def remove_duplicates(pcd, voxel_size=0.01):
    pcd2 = copy.deepcopy(pcd)
    # 通过体素下采样删除重叠点
    pcd2 = pcd2.voxel_down_sample(voxel_size)
    return pcd2


pcd = o3d.io.read_point_cloud("test.pcd")
o3d.visualization.draw_geometries([pcd])

# 删除重叠点
pcd_without_duplicates = remove_duplicates(pcd)
print("原始点云个数:", pcd)
print("去重之后:", pcd_without_duplicates)
pcd.paint_uniform_color([1, 0, 0])
pcd_without_duplicates.paint_uniform_color([0, 1, 0])
o3d.visualization.draw_geometries([pcd,pcd_without_duplicates])

三、实现效果

3.1原始点云

3.2处理后点云

3.3数据对比

python 复制代码
原始点云个数: PointCloud with 2400 points.
去重之后: PointCloud with 1999 points.
相关推荐
机器之心2 分钟前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
该用户已不存在7 分钟前
Mojo vs Python vs Rust: 2025年搞AI,该学哪个?
后端·python·rust
算家计算15 分钟前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位18 分钟前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算27 分钟前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
NAGNIP2 小时前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
站大爷IP2 小时前
Java调用Python的5种实用方案:从简单到进阶的全场景解析
python
聚客AI2 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar2 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生3 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能