RNN 交叉熵

RNN善于处理时序 序列数据

简单RNN

展开就是

LSTM

遗忘门f_t决定上期记忆保留多少

隐藏层

在神经网络中,隐藏层指的是除了输入层和输出层之外的层,它们的输出不会直接用于网络的最终输出,而是作为中间步骤用于提取和转换数据。因此,如:卷积层作为一种在输入和输出之间的处理层,被归类为隐藏层。

隐状态

X_t符号含义

反向传播以求梯度 前向传播以求输出

信息论

信息熵

交叉熵损失函数

可以由信息熵推广而来,也可以通过极大似然的推导而来

softmax

然后选最大的,详见DL Softmax,多层感知机,卷积【0】_softmax与多层感知机的对比-CSDN博客

概率论

极大似然

数据集中,每个点的概率密度函数之积最小(即约≈p(X)),求导=0求参数,叫做参数的极大似然估计

相关推荐
CM莫问4 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
听吉米讲故事7 小时前
DeepSeek R1发布综述:开源大语言模型的推理能力新标杆
人工智能·语言模型·自然语言处理
跟德姆(dom)一起学AI8 小时前
0基础跟德姆(dom)一起学AI 自然语言处理18-解码器部分实现
人工智能·python·rnn·深度学习·自然语言处理·transformer
清图8 小时前
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
人工智能·python·深度学习·机器学习·计算机视觉·自然语言处理·ai作画
琴智冰8 小时前
使用ollama本地部署微调后的大语言模型
人工智能·语言模型·自然语言处理
计算机软件程序设计10 小时前
自然语言处理(NLP)领域相关模型概述
人工智能·自然语言处理
机器学习之心13 小时前
GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比
人工智能·cnn·lstm·cnn-lstm·ga-cnn-lstm
CM莫问13 小时前
<论文>用于大语言模型去偏的因果奖励机制
人工智能·深度学习·算法·语言模型·自然语言处理
网安打工仔16 小时前
斯坦福李飞飞最新巨著《AI Agent综述》
人工智能·自然语言处理·大模型·llm·agent·ai大模型·大模型入门
坐吃山猪1 天前
机器学习10-解读CNN代码Pytorch版
pytorch·机器学习·cnn