Elasticsearch详细介绍

B站对应视频:

Elasticsearch01-01.为什么学习elasticsearch_哔哩哔哩_bilibili

大多数日常项目,搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的,存在很多问题。

首先,查询效率较低。

由于数据库模糊查询不走索引,在数据量较大的时候,查询性能很差。

改为基于搜索引擎后速度会有显著提升。

需要注意的是,数据库模糊查询随着表数据量的增多,查询性能的下降会非常明显,而搜索引擎的性能则不会随着数据增多而下降太多。

其次,功能单一

数据库的模糊搜索功能单一,匹配条件非常苛刻,必须恰好包含用户搜索的关键字。而在搜索引擎中,用户输入出现个别错字,或者用拼音搜索、同义词搜索都能正确匹配到数据。

综上,在面临海量数据的搜索,或者有一些复杂搜索需求的时候,推荐使用专门的搜索引擎来实现搜索功能。

目前全球的搜索引擎技术排名如下:

排名第一的就是我们今天要学习的elasticsearch.

elasticsearch是一款非常强大的开源搜索引擎,支持的功能非常多,例如:

代码搜索

商品搜索

解决方案搜索

地图搜索

通过今天的学习大家要达成下列学习目标:

  • 理解倒排索引原理

  • 会使用IK分词器

  • 理解索引库Mapping映射的属性含义

  • 能创建索引库及映射

  • 能实现文档的CRUD

1.初识elasticsearch

Elasticsearch的官方网站如下:

https://www.elastic.co/cn/elasticsearch/

本章我们一起来初步了解一下Elasticsearch的基本原理和一些基础概念。

1.1.认识和安装

Elasticsearch是由elastic公司开发的一套搜索引擎技术,它是elastic技术栈中的一部分。完整的技术栈包括:

  • Elasticsearch:用于数据存储、计算和搜索

  • Logstash/Beats:用于数据收集

  • Kibana:用于数据可视化

整套技术栈被称为ELK,经常用来做日志收集、系统监控和状态分析等等:

整套技术栈的核心就是用来存储搜索计算的Elasticsearch,因此我们接下来学习的核心也是Elasticsearch。

我们要安装的内容包含2部分:

  • elasticsearch:存储、搜索和运算

  • kibana:图形化展示

首先Elasticsearch不用多说,是提供核心的数据存储、搜索、分析功能的。

然后是Kibana,Elasticsearch对外提供的是Restful风格的API,任何操作都可以通过发送http请求来完成。不过http请求的方式、路径、还有请求参数的格式都有严格的规范。这些规范我们肯定记不住,因此我们要借助于Kibana这个服务。

Kibana是elastic公司提供的用于操作Elasticsearch的可视化控制台。它的功能非常强大,包括:

  • 对Elasticsearch数据的搜索、展示

  • 对Elasticsearch数据的统计、聚合,并形成图形化报表、图形

  • 对Elasticsearch的集群状态监控

  • 它还提供了一个开发控制台(DevTools),在其中对Elasticsearch的Restful的API接口提供了语法提示

1.1.1.安装elasticsearch

通过下面的Docker命令即可安装单机版本的elasticsearch:

复制代码
docker run -d \
  --name es \
  -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
  -e "discovery.type=single-node" \
  -v es-data:/usr/share/elasticsearch/data \
  -v es-plugins:/usr/share/elasticsearch/plugins \
  --privileged \
  --network hm-net \
  -p 9200:9200 \
  -p 9300:9300 \
  elasticsearch:7.12.1

注意,这里我们采用的是elasticsearch的7.12.1版本,由于8以上版本的JavaAPI变化很大,在企业中应用并不广泛,企业中应用较多的还是8以下的版本。

如果拉取镜像困难,可以直接使用这个镜像tar包(所有资料在文章末尾可以一次性提取):

安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息:

相关推荐
喂完待续1 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交1 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特7 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
水无痕simon9 小时前
5 索引的操作
数据库·elasticsearch
SEO_juper9 小时前
AI 搜索时代:引领变革,重塑您的 SEO 战略
人工智能·搜索引擎·seo·数字营销·seo优化
1892280486111 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
Blossom.11811 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
武子康11 小时前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.13 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧13 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python