Efficient Estimation of Word Representations in Vector Space论文笔记解读

基本信息

作者 TomasMikolov doi 10.48550
发表时间 2013 期刊 ICLR
网址 http://arxiv.org/abs/1301.3781

研究背景

1. What's known 既往研究已证实

前馈神经网络语言模型(NNLM)

循环神经网络语言模型(RNNLM)

2. What's new 创新点

Word2vec有两种模型:CBOW和Skip-gram,使得计算成本下降并且准确率提升。

Word2vec的向量表示能够自动捕捉到单词之间的语义和语法关系。

3. What's are the implications 意义

加快训练速度。

能够在大规模语料上进行词向量的训练。

衡量词向量之间的相似程度。

研究方法

1. skip-gram

通过中心单词来预测上下文单词。对于给定的一对(中心单词,上下文单词),我们希望最大化它们的共现概率。

用softmax来估计每个上下文单词的概率:

损失函数:

2. cbow(词袋模型bag-of-word)

用周围词预测中心词,求和的时候忽略了每个词的顺序。

损失函数:

最后输出V个概率,复杂度比较高,采用了2重方法降低复杂度,分别是层次softmax和负采样。

3. Hierarchical Softmax

将输出层的单词表示为一个二叉树,其中每个叶子节点都表示一个单词。每个非叶子节点都表示两个子节点的内积,每个叶子节点都表示该单词的条件概率。由于二叉树的形状,我们可以使用 l o g 2 W log_{2}W log2W个节点来表示词汇表大小为W的模型,降低计算量。

4. Negative Sampling

舍弃多分类,把多分类转变成二分类问题(正样本和负样本)。

正样本:用中心词和其中一个周围词做成正样本(jumps over)

负样本:我们随机从词表里面选一个词与over构成负样本(over again)

增大正样本的概率,减小负样本的概率。

损失函数:正样本函数+负样本函数

函数"J neg-sample "越大越好,损失函数需要加个符号让损失越小越好。
https://zhuanlan.zhihu.com/p/419804103

结果与讨论

  1. 单词向量优于以前的技术状态。
  2. 使用非常简单的模型架构可以训练高质量的词向量。计算复杂性低,可从更大的数据集中计算非常精确的高维词向量。
  3. 通过Word2vec训练出的词向量可以用于许多自然语言处理任务,例如词义相似度计算、命名实体识别和情感分析等。

重要图

文献中重要的图记录下来

相关推荐
wapicn993 分钟前
‌挖数据平台对接DeepSeek推出一键云端部署功能:API接口驱动金融、汽车等行业智能化升级
java·人工智能·python·金融·汽车·php
不爱学习的YY酱11 分钟前
MusicGPT的本地化部署与远程调用:让你的Windows电脑成为AI音乐工作站
人工智能·windows
技术蔡蔡12 分钟前
Android字节码处理-函数耗时统计揭秘
算法·面试
kakaZhui13 分钟前
【多模态大模型】端侧语音大模型minicpm-o:手机上的 GPT-4o 级多模态大模型
人工智能·chatgpt·aigc·llama
艾思科蓝 AiScholar18 分钟前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
liruiqiang0531 分钟前
机器学习 - 衡量模型的特性
人工智能·机器学习
Felven34 分钟前
B. Skibidus and Ohio
算法
yonuyeung39 分钟前
代码随想录算法【Day54】
java·数据结构·算法
日记成书40 分钟前
详细介绍嵌入式硬件设计
嵌入式硬件·深度学习·学习
thinkMoreAndDoMore41 分钟前
深度学习(3)-TensorFlow入门(梯度带)
人工智能·深度学习·tensorflow