交叉熵损失函数的使用目的(很肤浅的理解)

第一种使用方法

复制代码
import torch
from torch import nn  # Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()

第二种使用方法

复制代码
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

自己的理解:

传进去的是(3,5)维度的数据,其中3可以代表有3个图片(数据),5代表有5中类别(0,1,2,3,4这几类)。

复制代码
[ 0.1087, -0.4276,  0.9313, -1.0140,  2.1229]表示预测的是

····第一个图是第一类的概率是 0.1087

·····第一个图是第一类的概率是 -0.4276(负数无所谓,举的例子是随机的嘛)

。。。

target的形状就是[3],代表有三个目标真实值。其中[3,4,2]代表对应上面那个input的

----第一行的第3个值

----第二行的第4个值

----第3行的第2个值

这三个值就是真实值,表示是这些真实值的概率

交叉熵目的:

是预测值的概率更加接近真实值,让那些真实值对于的概率的类别更加大

就是让这些红色的值变大。具体是怎么变的可以查阅相关的资料

相关推荐
想成为风筝4 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
大知闲闲哟4 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
vv_5016 小时前
深度学习 tensor及其相关操作
人工智能·深度学习·tensor基础操作
whabc1006 小时前
和鲸社区深度学习基础训练营2025年关卡2(1)纯numpy
人工智能·深度学习
咸鱼鲸7 小时前
【PyTorch】PyTorch中的数据预处理操作
人工智能·pytorch·python
深度学习机器8 小时前
OCRFlux-3B:开源 OCR + LLM 模型的新标杆,支持跨页表格合并
人工智能·机器学习·语言模型·ocr
胡耀超9 小时前
Umi-OCR 的 Docker安装(win制作镜像,Linux(Ubuntu Server 22.04)离线部署)
linux·深度学习·ubuntu·docker·容器·nlp·ocr
子时不睡9 小时前
【Datawhale AI 夏令营】 用AI做带货视频评论分析(一)
人工智能·深度学习·音视频
阿里云大数据AI技术9 小时前
云上AI推理平台全掌握 (3):服务接入与全球调度
大数据·人工智能·深度学习
大千AI助手9 小时前
TinyBERT:知识蒸馏驱动的BERT压缩革命 | 模型小7倍、推理快9倍的轻量化引擎
人工智能·深度学习·机器学习·自然语言处理·bert·蒸馏·tinybert