交叉熵损失函数的使用目的(很肤浅的理解)

第一种使用方法

复制代码
import torch
from torch import nn  # Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()

第二种使用方法

复制代码
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

自己的理解:

传进去的是(3,5)维度的数据,其中3可以代表有3个图片(数据),5代表有5中类别(0,1,2,3,4这几类)。

复制代码
[ 0.1087, -0.4276,  0.9313, -1.0140,  2.1229]表示预测的是

····第一个图是第一类的概率是 0.1087

·····第一个图是第一类的概率是 -0.4276(负数无所谓,举的例子是随机的嘛)

。。。

target的形状就是[3],代表有三个目标真实值。其中[3,4,2]代表对应上面那个input的

----第一行的第3个值

----第二行的第4个值

----第3行的第2个值

这三个值就是真实值,表示是这些真实值的概率

交叉熵目的:

是预测值的概率更加接近真实值,让那些真实值对于的概率的类别更加大

就是让这些红色的值变大。具体是怎么变的可以查阅相关的资料

相关推荐
清风与日月1 天前
halcon分类器使用标准流程
深度学习·目标检测·计算机视觉
渔舟渡简1 天前
机器学习-回归分析之一元线性回归
机器学习·线性回归
西西阿西哥1 天前
【随便聊聊】和ChatGPT聊聊潜空间
深度学习·chatgpt
B站计算机毕业设计之家1 天前
Python招聘数据分析可视化系统 Boss直聘数据 selenium爬虫 Flask框架 数据清洗(附源码)✅
爬虫·python·selenium·机器学习·数据分析·flask
CAD老兵1 天前
量化技术:如何让你的 3D 模型和 AI 模型瘦身又飞快
人工智能·深度学习·机器学习
算法与编程之美1 天前
探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式
人工智能·深度学习·机器学习·分类·数据挖掘
大千AI助手1 天前
微软SPARTA框架:高效稀疏注意力机制详解
人工智能·深度学习·神经网络·llm·大千ai助手·sparta·稀疏注意力机制
云茧1 天前
机器学习中的Hello World:线性回归(一)
人工智能·机器学习·线性回归
执笔论英雄1 天前
【大模型训练】zero 学习及deepseed实战
人工智能·深度学习·学习
RWKV元始智能1 天前
RWKV7-G0a3 13.3B 发布:世界最强纯 RNN 大语言模型
人工智能·机器学习·开源