交叉熵损失函数的使用目的(很肤浅的理解)

第一种使用方法

复制代码
import torch
from torch import nn  # Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()

第二种使用方法

复制代码
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

自己的理解:

传进去的是(3,5)维度的数据,其中3可以代表有3个图片(数据),5代表有5中类别(0,1,2,3,4这几类)。

复制代码
[ 0.1087, -0.4276,  0.9313, -1.0140,  2.1229]表示预测的是

····第一个图是第一类的概率是 0.1087

·····第一个图是第一类的概率是 -0.4276(负数无所谓,举的例子是随机的嘛)

。。。

target的形状就是[3],代表有三个目标真实值。其中[3,4,2]代表对应上面那个input的

----第一行的第3个值

----第二行的第4个值

----第3行的第2个值

这三个值就是真实值,表示是这些真实值的概率

交叉熵目的:

是预测值的概率更加接近真实值,让那些真实值对于的概率的类别更加大

就是让这些红色的值变大。具体是怎么变的可以查阅相关的资料

相关推荐
Mr_Oak6 分钟前
【multi-model】DINOv2(包含iBOT)& 问答
图像处理·人工智能·深度学习·算法·多模态·对比学习·视觉大模型
七夜zippoe10 分钟前
轻量模型微调:LoRA、QLoRA实战对比与工程实践指南
人工智能·深度学习·算法·lora·qlora·量化训练
严文文-Chris15 分钟前
【非监督学习常见算法】
学习·算法·机器学习
玦尘、15 分钟前
《统计学习方法》第5章——决策树(下)【学习笔记】
决策树·机器学习·学习方法
红队it19 分钟前
【机器学习】python旅游数据分析可视化协同过滤算法推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
python·mysql·算法·机器学习·数据分析·旅游
LaughingZhu20 分钟前
Product Hunt 每日热榜 | 2025-12-04
人工智能·经验分享·深度学习·神经网络·产品运营
c骑着乌龟追兔子31 分钟前
Day 29 机器学习管道 pipeline
人工智能·机器学习
努力也学不会java33 分钟前
【docker】Docker Image(镜像)
java·运维·人工智能·机器学习·docker·容器
大千AI助手34 分钟前
高维空间中的高效导航者:球树(Ball Tree)算法深度解析
人工智能·算法·机器学习·数据挖掘·大千ai助手·球树·ball-tree
子午1 小时前
【植物识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习