交叉熵损失函数的使用目的(很肤浅的理解)

第一种使用方法

复制代码
import torch
from torch import nn  # Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()

第二种使用方法

复制代码
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

自己的理解:

传进去的是(3,5)维度的数据,其中3可以代表有3个图片(数据),5代表有5中类别(0,1,2,3,4这几类)。

复制代码
[ 0.1087, -0.4276,  0.9313, -1.0140,  2.1229]表示预测的是

····第一个图是第一类的概率是 0.1087

·····第一个图是第一类的概率是 -0.4276(负数无所谓,举的例子是随机的嘛)

。。。

target的形状就是[3],代表有三个目标真实值。其中[3,4,2]代表对应上面那个input的

----第一行的第3个值

----第二行的第4个值

----第3行的第2个值

这三个值就是真实值,表示是这些真实值的概率

交叉熵目的:

是预测值的概率更加接近真实值,让那些真实值对于的概率的类别更加大

就是让这些红色的值变大。具体是怎么变的可以查阅相关的资料

相关推荐
Quintus五等升6 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
汗流浃背了吧,老弟!8 小时前
什么是ResNet
人工智能·深度学习
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (三)语言模型
深度学习·ai
小途软件8 小时前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
普通网友9 小时前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
捕风捉你9 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
lixzest9 小时前
C++上位机软件开发入门深度学习
开发语言·c++·深度学习
AI模块工坊10 小时前
【AAAI 2026】即插即用 Spikingformer 重构残差连接,打造高效脉冲 Transformer
深度学习·重构·transformer
棒棒的皮皮10 小时前
【深度学习】YOLO模型评估之指标、可视化曲线分析
人工智能·深度学习·yolo·计算机视觉
2501_9418787412 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习