交叉熵损失函数的使用目的(很肤浅的理解)

第一种使用方法

复制代码
import torch
from torch import nn  # Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()

第二种使用方法

复制代码
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

自己的理解:

传进去的是(3,5)维度的数据,其中3可以代表有3个图片(数据),5代表有5中类别(0,1,2,3,4这几类)。

复制代码
[ 0.1087, -0.4276,  0.9313, -1.0140,  2.1229]表示预测的是

····第一个图是第一类的概率是 0.1087

·····第一个图是第一类的概率是 -0.4276(负数无所谓,举的例子是随机的嘛)

。。。

target的形状就是[3],代表有三个目标真实值。其中[3,4,2]代表对应上面那个input的

----第一行的第3个值

----第二行的第4个值

----第3行的第2个值

这三个值就是真实值,表示是这些真实值的概率

交叉熵目的:

是预测值的概率更加接近真实值,让那些真实值对于的概率的类别更加大

就是让这些红色的值变大。具体是怎么变的可以查阅相关的资料

相关推荐
万事ONES5 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
renhongxia15 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
cskywit6 小时前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
旅途中的宽~7 小时前
【深度学习】通过nohup后台运行训练命令后,如何通过日志文件反向查找并终止进程?
linux·深度学习
zy_destiny8 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
power 雀儿8 小时前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
(; ̄ェ ̄)。8 小时前
机器学习入门(十八)特征降维
人工智能·机器学习
薛不痒8 小时前
深度学习的补充:神经网络处理回归问题(人脸关键点识别)&自然语言处理的介绍
深度学习·神经网络·回归
m0_603888718 小时前
Toward Cognitive Supersensing in Multimodal Large Language Model
人工智能·机器学习·ai·语言模型·论文速览
GIS数据转换器9 小时前
基于AI的低空数联无人机智慧巡查平台
大数据·人工智能·机器学习·无人机·宠物