昇思25天学习打卡营第8天|模型权重保存与加载

打卡

目录

打卡

模型的两种保存形式

Checkpoint

中间表示IR

模型保存与加载

模型权重保存-例1

模型权重加载-例1

模型权重保存-例2

模型权重加载-例2

模型权重文件的空间占用计算-例


模型的两种保存形式

Checkpoint

权重参数文件

中间表示IR

中间表示(Intermediate Representation,IR)是程序编译过程中介于源语言和目标语言之间的程序表示。MindIR是一种基于图表示的函数式IR,其最核心的目的是服务于自动微分变换

在图模式set_context(mode=GRAPH_MODE)下运行用MindSpore编写的模型时,若配置中设置了set_context(save_graphs=1),运行时会输出一些图编译过程中生成的一些中间文件,我们称为IR文件。

  • ir后缀结尾的IR文件:一种比较直观易懂的以文本格式描述模型结构的文件,可以直接用文本编辑软件查看。

  • dot后缀结尾的IR文件:描述了不同节点间的拓扑关系,可以用graphviz将此文件作为输入生成图片,方便用户直观地查看模型结构。对于算子比较多的模型,推荐使用可视化组件MindSpore Insight对计算图进行可视化。

模型保存与加载

保存流程:

  • 定义模型网络
  • 选择损失函数、优化器等
  • 训练模型、更新模型权重参数
  • 选择1:保存模型权重参数Checkpoint到本地
  • 选择2:保存中间表示IR到本地

加载流程:

  • 定义模型网络
  • 选择1:从本地加载模型权重参数Checkpoint
  • 选择2:保存中间表示IR到本地

模型权重保存-例1

python 复制代码
model = network()
mindspore.save_checkpoint( 
       model,         ## 待保存的对象。数据类型可为 mindspore.nn.Cell 、list或dict。
       "model.ckpt"   ## 模型权重保存路径
     )

模型权重加载-例1

python 复制代码
model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(
                                    model, 
                                    param_dict
                                  )
print(param_not_load)  ## param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

模型权重保存-例2

MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。

python 复制代码
model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, 
                inputs, 
                file_name="model", 
                file_format="MINDIR"
                )

模型权重加载-例2

python 复制代码
mindspore.set_context(mode=mindspore.GRAPH_MODE)

graph = mindspore.load("model.mindir")
model = nn.GraphCell(graph)
outputs = model(inputs)
print(outputs.shape)

模型权重文件的空间占用计算-例

  • 计算方式:计算模型参数个数;按照每个参数占用的字节数计算所有参数的字节占用;转换字节占用单位为MB或GB等。
  • 对比:查看实际保存的大小,与计算预期占用字节数做对比。

例子如下:可以看到,计算与预期基本一致。MindIR同时保存了Checkpoint和模型结构,参数文件会更大一些。

相关推荐
凤枭香4 分钟前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算5 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
测试杂货铺12 分钟前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森16 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112318 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子22 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing35 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
小码的头发丝、42 分钟前
Django中ListView 和 DetailView类的区别
数据库·python·django
幼儿园老大*1 小时前
走进 Go 语言基础语法
开发语言·后端·学习·golang·go
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书